此数据转换是一个PIVOT
. 在 SQL Server 2005+ 中有一个函数可以为您旋转数据。有几种方法可以获得您想要的结果。两个版本都将实现 theUNPIVOT
和 thenPIVOT
函数。
样本数据:
CREATE TABLE Person ([EmployeeId] int, [Name] varchar(4));
INSERT INTO Person ([EmployeeId], [Name])
VALUES
(11, 'Jim'),
(10, 'John'),
(8, 'Mary'),
(4, 'Tim');
CREATE TABLE DoorLog([EmployeeId] int, [DoorDate] datetime);
INSERT INTO DoorLog ([EmployeeId], [DoorDate])
VALUES
(11, '2013-01-31 12:31:00'),
(11, '2013-01-31 16:50:00'),
(11, '2013-01-31 17:50:00'),
(10, '2013-01-25 10:31:00'),
(10, '2013-01-25 16:45:00'),
(8, '2013-01-23 13:29:00'),
(8, '2013-01-23 18:25:00'),
(4, '2013-01-20 11:49:00'),
(4, '2013-01-20 19:10:00'),
(11, '2013-01-15 11:15:00'),
(11, '2013-01-15 16:25:00'),
(10, '2013-01-10 09:21:00'),
(10, '2013-01-10 15:45:00'),
(8, '2013-01-08 01:29:00'),
(8, '2013-01-08 02:25:00'),
(4, '2013-01-06 10:17:00'),
(4, '2013-01-06 19:10:00');
您的查询从获取每个日期的最小值/最大值的员工列表开始:
select p.employeeid,
p.name,
convert(char(10),d.doordate, 101) date,
min(d.doordate) [In],
max(d.doordate) [Out]
from person p
left join doorlog d
on p.employeeid = d.employeeid
group by p.employeeid, p.name,
convert(char(10),d.doordate, 101)
请参阅带有演示的 SQL Fiddle
下一步是UNPIVOT
将输入/输出时间的单独列放入多行中:
select employeeid, name,
convert(char(8), doortime, 108) DoorTime,
date + '_'+ col as col_names
from
(
select p.employeeid,
p.name,
convert(char(10),d.doordate, 101) date,
min(d.doordate) [In],
max(d.doordate) [Out]
from person p
left join doorlog d
on p.employeeid = d.employeeid
group by p.employeeid, p.name,
convert(char(10),d.doordate, 101)
) src
unpivot
(
doortime
for col in ([In], [Out])
) unpiv
请参阅SQL Fiddle with Demo。结果将如下所示:
| EMPLOYEEID | NAME | DOORTIME | COL_NAMES |
-------------------------------------------------
| 4 | Tim | 10:17:00 | 01/06/2013_In |
| 4 | Tim | 19:10:00 | 01/06/2013_Out |
| 4 | Tim | 11:49:00 | 01/20/2013_In |
| 4 | Tim | 19:10:00 | 01/20/2013_Out |
一旦你得到这个结果,你就可以应用枢轴。如果您提前知道日期值,则可以对这些值进行硬编码,如下所示:
select *
from
(
select employeeid, name,
convert(char(8), doortime, 108) DoorTime,
date + '_'+ col as col_names
from
(
select p.employeeid,
p.name,
convert(char(10),d.doordate, 101) date,
min(d.doordate) [In],
max(d.doordate) [Out]
from person p
left join doorlog d
on p.employeeid = d.employeeid
group by p.employeeid, p.name,
convert(char(10),d.doordate, 101)
) src
unpivot
(
doortime
for col in ([In], [Out])
) unpiv
) p
pivot
(
max(doortime)
for col_names in ([01/06/2013_In], [01/06/2013_Out],
[01/08/2013_In], [01/08/2013_Out],
[01/10/2013_In], [01/10/2013_Out],
[01/15/2013_In], [01/15/2013_Out],
[01/20/2013_In], [01/20/2013_Out],
[01/23/2013_In], [01/23/2013_Out],
[01/31/2013_In], [01/31/2013_Out])
) piv
请参阅SQL Fiddle with Demo。
但是对于您的情况,您可能需要使用动态 SQL 来生成结果,因为您很可能希望任何一个月的动态结果。它的动态 SQL 版本是:
DECLARE @cols AS NVARCHAR(MAX),
@query AS NVARCHAR(MAX)
select @cols = STUFF((SELECT ',' + QUOTENAME(date +'_'+Logname)
from
(
select doordate,
convert(char(10),doordate, 101) date,
LogName
from DoorLog
cross apply
(
select 'In' LogName
union all
select 'Out'
) l
) s
group by convert(char(10), doordate, 112), date, Logname
order by convert(char(10), doordate, 112)
FOR XML PATH(''), TYPE
).value('.', 'NVARCHAR(MAX)')
,1,1,'')
set @query
= 'select employeeid, name, '+@cols+'
from
(
select employeeid, name,
convert(char(8), doortime, 108) DoorTime,
date + ''_''+ col col_names
from
(
select p.employeeid,
p.name,
convert(char(10),d.doordate, 101) date,
min(d.doordate) [In],
max(d.doordate) [Out]
from person p
left join doorlog d
on p.employeeid = d.employeeid
group by p.employeeid, p.name,
convert(char(10),d.doordate, 101)
)src
unpivot
(
doortime
for col in ([In], [Out])
) unpiv
) p
pivot
(
max(doortime)
for col_names in('+@cols+')
) piv'
execute(@query)
请参阅SQL Fiddle with Demo。
两个查询的结果是:
| EMPLOYEEID | NAME | 01/06/2013_IN | 01/06/2013_OUT | 01/08/2013_IN | 01/08/2013_OUT | 01/10/2013_IN | 01/10/2013_OUT | 01/15/2013_IN | 01/15/2013_OUT | 01/20/2013_IN | 01/20/2013_OUT | 01/23/2013_IN | 01/23/2013_OUT | 01/25/2013_IN | 01/25/2013_OUT | 01/31/2013_IN | 01/31/2013_OUT |
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
| 11 | Jim | (null) | (null) | (null) | (null) | (null) | (null) | 11:15:00 | 16:25:00 | (null) | (null) | (null) | (null) | (null) | (null) | 12:31:00 | 17:50:00 |
| 10 | John | (null) | (null) | (null) | (null) | 09:21:00 | 15:45:00 | (null) | (null) | (null) | (null) | (null) | (null) | 10:31:00 | 16:45:00 | (null) | (null) |
| 8 | Mary | (null) | (null) | 01:29:00 | 02:25:00 | (null) | (null) | (null) | (null) | (null) | (null) | 13:29:00 | 18:25:00 | (null) | (null) | (null) | (null) |
| 4 | Tim | 10:17:00 | 19:10:00 | (null) | (null) | (null) | (null) | (null) | (null) | 11:49:00 | 19:10:00 | (null) | (null) | (null) | (null) | (null) | (null) |