阅读《C - 参考手册(第五版)》一书,我偶然发现了这段代码(SET 中的每个整数都由一个位位置表示):
typedef unsigned int SET;
#define emptyset ((SET) 0)
#define first_set_of_n_elements(n) (SET)((1<<(n))-1)
/* next_set_of_n_elements(s): Given a set of n elements,
produce a new set of n elements. If you start with the
result of first_set_of_n_elements(k)/ and then at each
step apply next_set_of_n_elements to the previous result,
and keep going until a set is obtained containing m as a
member, you will have obtained a set representing all
possible ways of choosing k things from m things. */
SET next_set_of_n_elements(SET x) {
/* This code exploits many unusual properties of unsigned arithmetic. As an illustration:
if x == 001011001111000, then
smallest == 000000000001000
ripple == 001011010000000
new_smallest == 000000010000000
ones == 000000000000111
returned value == 001011010000111
The overall idea is that you find the rightmost
contiguous group of 1-bits. Of that group, you slide the
leftmost 1-bit to the left one place, and slide all the
others back to the extreme right.
(This code was adapted from HAKMEM.) */
SET smallest, ripple, new_smallest, ones;
if (x == emptyset) return x;
smallest = (x & -x);
ripple = x + smallest;
new_smallest = (ripple & -ripple);
ones = ((new_smallest / smallest) >> 1) -1;
return (ripple | ones);
}
我迷失在“一”的计算中,这在计算中很重要。虽然我可以理解数学上的计算,但我不明白为什么会这样,或者如何。
在相关的说明中,该书的作者声称 first_set_of_n_elements 的计算“利用了无符号减法的属性”。(2^n)-1 如何是“利用”?