我在互联网上阅读了很多文档、文章和帖子。几乎所有人和任何地方都认为 SpinLock 对于运行较短的代码片段更快,但我做了一个测试,在我看来,简单的 Monitor.Enter 比 SpinLock.Enter 工作得更快(测试是针对 .NET 4.5 编译的)
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Threading.Tasks;
using System.Linq;
using System.Globalization;
using System.ComponentModel;
using System.Threading;
using System.Net.Sockets;
using System.Net;
class Program
{
static int _loopsCount = 1000000;
static int _threadsCount = -1;
static ProcessPriorityClass _processPriority = ProcessPriorityClass.RealTime;
static ThreadPriority _threadPriority = ThreadPriority.Highest;
static long _testingVar = 0;
static void Main(string[] args)
{
_threadsCount = Environment.ProcessorCount;
Console.WriteLine("Cores/processors count: {0}", Environment.ProcessorCount);
Process.GetCurrentProcess().PriorityClass = _processPriority;
TimeSpan tsInterlocked = ExecuteInterlocked();
TimeSpan tsSpinLock = ExecuteSpinLock();
TimeSpan tsMonitor = ExecuteMonitor();
Console.WriteLine("Test with interlocked: {0} ms\r\nTest with SpinLock: {1} ms\r\nTest with Monitor: {2} ms",
tsInterlocked.TotalMilliseconds,
tsSpinLock.TotalMilliseconds,
tsMonitor.TotalMilliseconds);
Console.ReadLine();
}
static TimeSpan ExecuteInterlocked()
{
_testingVar = 0;
ManualResetEvent _startEvent = new ManualResetEvent(false);
CountdownEvent _endCountdown = new CountdownEvent(_threadsCount);
Thread[] threads = new Thread[_threadsCount];
for (int i = 0; i < threads.Length; i++)
{
threads[i] = new Thread(() =>
{
_startEvent.WaitOne();
for (int j = 0; j < _loopsCount; j++)
{
Interlocked.Increment(ref _testingVar);
}
_endCountdown.Signal();
});
threads[i].Priority = _threadPriority;
threads[i].Start();
}
Stopwatch sw = Stopwatch.StartNew();
_startEvent.Set();
_endCountdown.Wait();
return sw.Elapsed;
}
static SpinLock _spinLock = new SpinLock();
static TimeSpan ExecuteSpinLock()
{
_testingVar = 0;
ManualResetEvent _startEvent = new ManualResetEvent(false);
CountdownEvent _endCountdown = new CountdownEvent(_threadsCount);
Thread[] threads = new Thread[_threadsCount];
for (int i = 0; i < threads.Length; i++)
{
threads[i] = new Thread(() =>
{
_startEvent.WaitOne();
bool lockTaken;
for (int j = 0; j < _loopsCount; j++)
{
lockTaken = false;
try
{
_spinLock.Enter(ref lockTaken);
_testingVar++;
}
finally
{
if (lockTaken)
{
_spinLock.Exit();
}
}
}
_endCountdown.Signal();
});
threads[i].Priority = _threadPriority;
threads[i].Start();
}
Stopwatch sw = Stopwatch.StartNew();
_startEvent.Set();
_endCountdown.Wait();
return sw.Elapsed;
}
static object _locker = new object();
static TimeSpan ExecuteMonitor()
{
_testingVar = 0;
ManualResetEvent _startEvent = new ManualResetEvent(false);
CountdownEvent _endCountdown = new CountdownEvent(_threadsCount);
Thread[] threads = new Thread[_threadsCount];
for (int i = 0; i < threads.Length; i++)
{
threads[i] = new Thread(() =>
{
_startEvent.WaitOne();
bool lockTaken;
for (int j = 0; j < _loopsCount; j++)
{
lockTaken = false;
try
{
Monitor.Enter(_locker, ref lockTaken);
_testingVar++;
}
finally
{
if (lockTaken)
{
Monitor.Exit(_locker);
}
}
}
_endCountdown.Signal();
});
threads[i].Priority = _threadPriority;
threads[i].Start();
}
Stopwatch sw = Stopwatch.StartNew();
_startEvent.Set();
_endCountdown.Wait();
return sw.Elapsed;
}
}
在具有 24 个 2.5 GHz 内核的服务器上,此应用程序使用 x64 编译产生以下结果:
Cores/processors count: 24
Test with interlocked: 1373.0829 ms
Test with SpinLock: 10894.6283 ms
Test with Monitor: 1171.1591 ms