我正在尝试比较 CPU 和 GPU 的性能。我有
- CPU : Intel® Core™ i5 CPU M 480 @ 2.67GHz × 4
- 显卡:英伟达 GeForce GT 420M
我可以确认 GPU 已配置并与 CUDA 一起正常工作。
我正在实现 Julia 集计算。http://en.wikipedia.org/wiki/Julia_set 基本上对于每个像素,如果坐标在集合中,它将把它涂成红色,否则把它涂成白色。
虽然,我对 CPU 和 GPU 都得到了相同的答案,但我没有得到性能改进,而是使用 GPU 得到了性能损失。
运行时间
- CPU : 0.052s
- 显卡:0.784s
我知道将数据从设备传输到主机可能需要一些时间。但是,我怎么知道使用 GPU 是否真的有益?
这是相关的GPU代码
#include <stdio.h>
#include <cuda.h>
__device__ bool isJulia( float x, float y, float maxX_2, float maxY_2 )
{
float z_r = 0.8 * (float) (maxX_2 - x) / maxX_2;
float z_i = 0.8 * (float) (maxY_2 - y) / maxY_2;
float c_r = -0.8;
float c_i = 0.156;
for( int i=1 ; i<100 ; i++ )
{
float tmp_r = z_r*z_r - z_i*z_i + c_r;
float tmp_i = 2*z_r*z_i + c_i;
z_r = tmp_r;
z_i = tmp_i;
if( sqrt( z_r*z_r + z_i*z_i ) > 1000 )
return false;
}
return true;
}
__global__ void kernel( unsigned char * im, int dimx, int dimy )
{
//int tid = blockIdx.y*gridDim.x + blockIdx.x;
int tid = blockIdx.x*blockDim.x + threadIdx.x;
tid *= 3;
if( isJulia((float)blockIdx.x, (float)threadIdx.x, (float)dimx/2, (float)dimy/2)==true )
{
im[tid] = 255;
im[tid+1] = 0;
im[tid+2] = 0;
}
else
{
im[tid] = 255;
im[tid+1] = 255;
im[tid+2] = 255;
}
}
int main()
{
int dimx=768, dimy=768;
//on cpu
unsigned char * im = (unsigned char*) malloc( 3*dimx*dimy );
//on GPU
unsigned char * im_dev;
//allocate mem on GPU
cudaMalloc( (void**)&im_dev, 3*dimx*dimy );
//launch kernel.
**for( int z=0 ; z<10000 ; z++ ) // loop for multiple times computation**
{
kernel<<<dimx,dimy>>>(im_dev, dimx, dimy);
}
cudaMemcpy( im, im_dev, 3*dimx*dimy, cudaMemcpyDeviceToHost );
writePPMImage( im, dimx, dimy, 3, "out_gpu.ppm" ); //assume this writes a ppm file
free( im );
cudaFree( im_dev );
}
这是CPU代码
bool isJulia( float x, float y, float maxX_2, float maxY_2 )
{
float z_r = 0.8 * (float) (maxX_2 - x) / maxX_2;
float z_i = 0.8 * (float) (maxY_2 - y) / maxY_2;
float c_r = -0.8;
float c_i = 0.156;
for( int i=1 ; i<100 ; i++ )
{
float tmp_r = z_r*z_r - z_i*z_i + c_r;
float tmp_i = 2*z_r*z_i + c_i;
z_r = tmp_r;
z_i = tmp_i;
if( sqrt( z_r*z_r + z_i*z_i ) > 1000 )
return false;
}
return true;
}
#include <stdlib.h>
#include <stdio.h>
int main(void)
{
const int dimx = 768, dimy = 768;
int i, j;
unsigned char * data = new unsigned char[dimx*dimy*3];
**for( int z=0 ; z<10000 ; z++ ) // loop for multiple times computation**
{
for (j = 0; j < dimy; ++j)
{
for (i = 0; i < dimx; ++i)
{
if( isJulia(i,j,dimx/2,dimy/2) == true )
{
data[3*j*dimx + 3*i + 0] = (unsigned char)255; /* red */
data[3*j*dimx + 3*i + 1] = (unsigned char)0; /* green */
data[3*j*dimx + 3*i + 2] = (unsigned char)0; /* blue */
}
else
{
data[3*j*dimx + 3*i + 0] = (unsigned char)255; /* red */
data[3*j*dimx + 3*i + 1] = (unsigned char)255; /* green */
data[3*j*dimx + 3*i + 2] = (unsigned char)255; /* blue */
}
}
}
}
writePPMImage( data, dimx, dimy, 3, "out_cpu.ppm" ); //assume this writes a ppm file
delete [] data
return 0;
}
此外,根据@hyde 的建议,我循环了仅计算部分以生成 10,000 张图像。不过,我并不费心写所有这些图像。我正在做的只是计算。
以下是运行时间
- CPU:超过 10 分钟,代码仍在运行
- GPU:1m 14.765s