我一直在使用scipy.cluster.vq.kmeans
k-means 聚类,但想知道是否有办法确定每个数据点(推定)与哪个质心相关联。
显然,您可以手动执行此操作,但据我所知,kmeans 函数不会返回这个?
我一直在使用scipy.cluster.vq.kmeans
k-means 聚类,但想知道是否有办法确定每个数据点(推定)与哪个质心相关联。
显然,您可以手动执行此操作,但据我所知,kmeans 函数不会返回这个?
其中也有一个返回标签的函数kmeans2
。scipy.cluster.vq
In [8]: X = scipy.randn(100, 2)
In [9]: centroids, labels = kmeans2(X, 3)
In [10]: labels
Out[10]:
array([2, 1, 2, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 2, 1, 2, 1, 2, 0,
1, 0, 2, 0, 1, 2, 0, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 0, 0,
2, 2, 0, 1, 0, 0, 0, 2, 2, 2, 0, 0, 1, 2, 1, 0, 0, 0, 2, 1, 1, 1, 1,
1, 0, 0, 1, 0, 1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 2, 2, 0,
1, 1, 0, 1, 0, 0, 0, 2])
否则,如果必须使用kmeans
,也可以使用vq
来获取标签:
In [17]: from scipy.cluster.vq import kmeans, vq
In [18]: codebook, distortion = kmeans(X, 3)
In [21]: code, dist = vq(X, codebook)
In [22]: code
Out[22]:
array([1, 0, 1, 0, 2, 2, 2, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1,
2, 2, 1, 2, 0, 1, 1, 0, 2, 2, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 1, 1, 1,
0, 1, 2, 0, 1, 2, 2, 1, 1, 1, 2, 2, 0, 0, 2, 2, 2, 2, 1, 0, 2, 2, 2,
0, 1, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 2, 0, 2, 0, 2, 2, 1, 1, 1, 1, 1,
2, 0, 2, 0, 2, 1, 1, 1])