由于有人已经发布了defaultdict
解决方案,我将给熊猫一个,只是为了多样化。 pandas
是一个非常方便的数据处理库。在其他不错的功能中,它可以在一行中处理此计数问题,具体取决于所需的输出类型。真的:
df = pd.read_csv("cluster.csv")
counted = df.groupby(["Cluster_id", "User", "Quality"]).size()
df.to_csv("counted.csv")
--
为了pandas
方便起见,我们可以加载文件——其中的主要数据存储对象pandas
称为“DataFrame”:
>>> import pandas as pd
>>> df = pd.read_csv("cluster.csv")
>>> df
<class 'pandas.core.frame.DataFrame'>
Int64Index: 500000 entries, 0 to 499999
Data columns:
Tag 500000 non-null values
User 500000 non-null values
Quality 500000 non-null values
Cluster_id 500000 non-null values
dtypes: int64(1), object(3)
我们可以检查前几行是否正常:
>>> df[:5]
Tag User Quality Cluster_id
0 bbb u001 bad 39
1 bbb u002 bad 36
2 bag u003 good 11
3 bag u004 good 9
4 bag u005 bad 26
然后我们可以按 Cluster_id 和 User 分组,并在每个组上工作:
>>> for name, group in df.groupby(["Cluster_id", "User"]):
... print 'group name:', name
... print 'group rows:'
... print group
... print 'counts of Quality values:'
... print group["Quality"].value_counts()
... raw_input()
...
group name: (1, 'u003')
group rows:
Tag User Quality Cluster_id
372002 xxx u003 bad 1
counts of Quality values:
bad 1
group name: (1, 'u004')
group rows:
Tag User Quality Cluster_id
126003 ground u004 bad 1
348003 ground u004 good 1
counts of Quality values:
good 1
bad 1
group name: (1, 'u005')
group rows:
Tag User Quality Cluster_id
42004 ground u005 bad 1
258004 ground u005 bad 1
390004 ground u005 bad 1
counts of Quality values:
bad 3
[etc.]
如果您要对csv
文件进行大量处理,那么绝对值得一看。