您需要在代码中找到错误。我的测试代码似乎工作得很好。
具有浮点数的复值正向 FFT:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "kiss_fft.h"
#ifndef M_PI
#define M_PI 3.14159265358979324
#endif
#define N 16
void TestFft(const char* title, const kiss_fft_cpx in[N], kiss_fft_cpx out[N])
{
kiss_fft_cfg cfg;
printf("%s\n", title);
if ((cfg = kiss_fft_alloc(N, 0/*is_inverse_fft*/, NULL, NULL)) != NULL)
{
size_t i;
kiss_fft(cfg, in, out);
free(cfg);
for (i = 0; i < N; i++)
printf(" in[%2zu] = %+f , %+f "
"out[%2zu] = %+f , %+f\n",
i, in[i].r, in[i].i,
i, out[i].r, out[i].i);
}
else
{
printf("not enough memory?\n");
exit(-1);
}
}
int main(void)
{
kiss_fft_cpx in[N], out[N];
size_t i;
for (i = 0; i < N; i++)
in[i].r = in[i].i = 0;
TestFft("Zeroes (complex)", in, out);
for (i = 0; i < N; i++)
in[i].r = 1, in[i].i = 0;
TestFft("Ones (complex)", in, out);
for (i = 0; i < N; i++)
in[i].r = sin(2 * M_PI * 4 * i / N), in[i].i = 0;
TestFft("SineWave (complex)", in, out);
return 0;
}
输出:
Zeroes (complex)
in[ 0] = +0.000000 , +0.000000 out[ 0] = +0.000000 , +0.000000
in[ 1] = +0.000000 , +0.000000 out[ 1] = +0.000000 , +0.000000
in[ 2] = +0.000000 , +0.000000 out[ 2] = +0.000000 , +0.000000
in[ 3] = +0.000000 , +0.000000 out[ 3] = +0.000000 , +0.000000
in[ 4] = +0.000000 , +0.000000 out[ 4] = +0.000000 , +0.000000
in[ 5] = +0.000000 , +0.000000 out[ 5] = +0.000000 , +0.000000
in[ 6] = +0.000000 , +0.000000 out[ 6] = +0.000000 , +0.000000
in[ 7] = +0.000000 , +0.000000 out[ 7] = +0.000000 , +0.000000
in[ 8] = +0.000000 , +0.000000 out[ 8] = +0.000000 , +0.000000
in[ 9] = +0.000000 , +0.000000 out[ 9] = +0.000000 , +0.000000
in[10] = +0.000000 , +0.000000 out[10] = +0.000000 , +0.000000
in[11] = +0.000000 , +0.000000 out[11] = +0.000000 , +0.000000
in[12] = +0.000000 , +0.000000 out[12] = +0.000000 , +0.000000
in[13] = +0.000000 , +0.000000 out[13] = +0.000000 , +0.000000
in[14] = +0.000000 , +0.000000 out[14] = +0.000000 , +0.000000
in[15] = +0.000000 , +0.000000 out[15] = +0.000000 , +0.000000
Ones (complex)
in[ 0] = +1.000000 , +0.000000 out[ 0] = +16.000000 , +0.000000
in[ 1] = +1.000000 , +0.000000 out[ 1] = +0.000000 , +0.000000
in[ 2] = +1.000000 , +0.000000 out[ 2] = +0.000000 , +0.000000
in[ 3] = +1.000000 , +0.000000 out[ 3] = +0.000000 , +0.000000
in[ 4] = +1.000000 , +0.000000 out[ 4] = +0.000000 , +0.000000
in[ 5] = +1.000000 , +0.000000 out[ 5] = +0.000000 , +0.000000
in[ 6] = +1.000000 , +0.000000 out[ 6] = +0.000000 , +0.000000
in[ 7] = +1.000000 , +0.000000 out[ 7] = +0.000000 , +0.000000
in[ 8] = +1.000000 , +0.000000 out[ 8] = +0.000000 , +0.000000
in[ 9] = +1.000000 , +0.000000 out[ 9] = +0.000000 , +0.000000
in[10] = +1.000000 , +0.000000 out[10] = +0.000000 , +0.000000
in[11] = +1.000000 , +0.000000 out[11] = +0.000000 , +0.000000
in[12] = +1.000000 , +0.000000 out[12] = +0.000000 , +0.000000
in[13] = +1.000000 , +0.000000 out[13] = +0.000000 , +0.000000
in[14] = +1.000000 , +0.000000 out[14] = +0.000000 , +0.000000
in[15] = +1.000000 , +0.000000 out[15] = +0.000000 , +0.000000
SineWave (complex)
in[ 0] = +0.000000 , +0.000000 out[ 0] = +0.000000 , +0.000000
in[ 1] = +1.000000 , +0.000000 out[ 1] = +0.000000 , +0.000000
in[ 2] = +0.000000 , +0.000000 out[ 2] = +0.000000 , +0.000000
in[ 3] = -1.000000 , +0.000000 out[ 3] = +0.000000 , +0.000000
in[ 4] = +0.000000 , +0.000000 out[ 4] = +0.000000 , -8.000000
in[ 5] = +1.000000 , +0.000000 out[ 5] = +0.000000 , +0.000000
in[ 6] = +0.000000 , +0.000000 out[ 6] = +0.000000 , +0.000000
in[ 7] = -1.000000 , +0.000000 out[ 7] = +0.000000 , +0.000000
in[ 8] = +0.000000 , +0.000000 out[ 8] = +0.000000 , +0.000000
in[ 9] = +1.000000 , +0.000000 out[ 9] = +0.000000 , +0.000000
in[10] = +0.000000 , +0.000000 out[10] = +0.000000 , +0.000000
in[11] = -1.000000 , +0.000000 out[11] = +0.000000 , +0.000000
in[12] = +0.000000 , +0.000000 out[12] = +0.000000 , +8.000000
in[13] = +1.000000 , +0.000000 out[13] = +0.000000 , +0.000000
in[14] = +0.000000 , +0.000000 out[14] = +0.000000 , +0.000000
in[15] = -1.000000 , +0.000000 out[15] = +0.000000 , +0.000000
带有浮点数的实值正向 FFT:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "kiss_fftr.h"
#ifndef M_PI
#define M_PI 3.14159265358979324
#endif
#define N 16
void TestFftReal(const char* title, const kiss_fft_scalar in[N], kiss_fft_cpx out[N / 2 + 1])
{
kiss_fftr_cfg cfg;
printf("%s\n", title);
if ((cfg = kiss_fftr_alloc(N, 0/*is_inverse_fft*/, NULL, NULL)) != NULL)
{
size_t i;
kiss_fftr(cfg, in, out);
free(cfg);
for (i = 0; i < N; i++)
{
printf(" in[%2zu] = %+f ",
i, in[i]);
if (i < N / 2 + 1)
printf("out[%2zu] = %+f , %+f",
i, out[i].r, out[i].i);
printf("\n");
}
}
else
{
printf("not enough memory?\n");
exit(-1);
}
}
int main(void)
{
kiss_fft_scalar in[N];
kiss_fft_cpx out[N / 2 + 1];
size_t i;
for (i = 0; i < N; i++)
in[i] = 0;
TestFftReal("Zeroes (real)", in, out);
for (i = 0; i < N; i++)
in[i] = 1;
TestFftReal("Ones (real)", in, out);
for (i = 0; i < N; i++)
in[i] = sin(2 * M_PI * 4 * i / N);
TestFftReal("SineWave (real)", in, out);
return 0;
}
输出:
Zeroes (real)
in[ 0] = +0.000000 out[ 0] = +0.000000 , +0.000000
in[ 1] = +0.000000 out[ 1] = +0.000000 , +0.000000
in[ 2] = +0.000000 out[ 2] = +0.000000 , +0.000000
in[ 3] = +0.000000 out[ 3] = +0.000000 , +0.000000
in[ 4] = +0.000000 out[ 4] = +0.000000 , +0.000000
in[ 5] = +0.000000 out[ 5] = +0.000000 , +0.000000
in[ 6] = +0.000000 out[ 6] = +0.000000 , +0.000000
in[ 7] = +0.000000 out[ 7] = +0.000000 , +0.000000
in[ 8] = +0.000000 out[ 8] = +0.000000 , +0.000000
in[ 9] = +0.000000
in[10] = +0.000000
in[11] = +0.000000
in[12] = +0.000000
in[13] = +0.000000
in[14] = +0.000000
in[15] = +0.000000
Ones (real)
in[ 0] = +1.000000 out[ 0] = +16.000000 , +0.000000
in[ 1] = +1.000000 out[ 1] = +0.000000 , +0.000000
in[ 2] = +1.000000 out[ 2] = +0.000000 , +0.000000
in[ 3] = +1.000000 out[ 3] = +0.000000 , +0.000000
in[ 4] = +1.000000 out[ 4] = +0.000000 , +0.000000
in[ 5] = +1.000000 out[ 5] = +0.000000 , +0.000000
in[ 6] = +1.000000 out[ 6] = +0.000000 , +0.000000
in[ 7] = +1.000000 out[ 7] = +0.000000 , +0.000000
in[ 8] = +1.000000 out[ 8] = +0.000000 , +0.000000
in[ 9] = +1.000000
in[10] = +1.000000
in[11] = +1.000000
in[12] = +1.000000
in[13] = +1.000000
in[14] = +1.000000
in[15] = +1.000000
SineWave (real)
in[ 0] = +0.000000 out[ 0] = +0.000000 , +0.000000
in[ 1] = +1.000000 out[ 1] = +0.000000 , +0.000000
in[ 2] = +0.000000 out[ 2] = +0.000000 , +0.000000
in[ 3] = -1.000000 out[ 3] = +0.000000 , +0.000000
in[ 4] = +0.000000 out[ 4] = +0.000000 , -8.000000
in[ 5] = +1.000000 out[ 5] = +0.000000 , +0.000000
in[ 6] = +0.000000 out[ 6] = +0.000000 , +0.000000
in[ 7] = -1.000000 out[ 7] = +0.000000 , +0.000000
in[ 8] = +0.000000 out[ 8] = +0.000000 , +0.000000
in[ 9] = +1.000000
in[10] = +0.000000
in[11] = -1.000000
in[12] = +0.000000
in[13] = +1.000000
in[14] = +0.000000
in[15] = -1.000000