2

我正在使用libsvm图像分类。为什么当我使用更多特征进行分类时,我的预测准确度会降低?不应该增加吗?我的数据集大小固定为 1600 用于训练和 400 用于测试。

4

1 回答 1

6

因为附加特征对于分离特征空间中的类可能根本没有用。准确性不一定与特征数量相关。

包含许多不良特征可能会导致您的 SVM 学习数据中的噪声,从而损害准确性。

例如,如果您的额外功能看起来像这样(为了清楚起见使用 2D 图):

class1 = 红色,class2 = 蓝色

那么分离(在这种情况下)两个类将不是一个很好的功能。例如,如果 SVM 只在这种模式上进行训练,那么它就不能很好地预测未来点的类别。但是,您的数据集中可能存在如下所示的特征: class1 = 红色,class2 = 蓝色

像这样的功能在分离这两个类时非常有用。

于 2013-01-25T12:47:29.357 回答