您好,我有按以下示例组织的数据框。我有一个时间戳、一个分组变量和几个带有每个时间戳的数值的变量。
# dput of subset of data
structure(list(TIMESTAMP = structure(1:15, .Label = c("1/1/2012 11:00",
"1/1/2012 12:00", "1/1/2012 13:00", "1/1/2012 14:00", "1/1/2012 15:00",
"1/2/2012 11:00", "1/2/2012 12:00", "1/2/2012 13:00", "1/2/2012 14:00",
"1/2/2012 15:00", "4/7/2012 11:00", "4/7/2012 12:00", "4/7/2012 13:00",
"4/7/2012 14:00", "4/7/2012 15:00"), class = "factor"), P = c(992.4,
992.4, 992.4, 992.4, 992.4, 992.4, 992.4, 992.4, 992.4, 992.4,
239, 239, 239, 239, 239), WS = c(4.023, 3.576, 4.023, 6.259,
4.47, 3.576, 3.576, 2.682, 4.023, 3.576, 2.682, 3.129, 2.682,
2.235, 2.682), WD = c(212L, 200L, 215L, 213L, 204L, 304L, 276L,
273L, 307L, 270L, 54L, 24L, 304L, 320L, 321L), AT = c(16.11,
18.89, 20, 20, 19.44, 10.56, 11.11, 11.67, 12.22, 11.11, 17.22,
18.33, 19.44, 20.56, 21.11), FT = c(17.22, 22.22, 22.78, 22.78,
20, 11.11, 15.56, 17.22, 17.78, 15.56, 24.44, 25.56, 29.44, 30.56,
29.44), H = c(50L, 38L, 38L, 39L, 48L, 24L, 19L, 18L, 16L, 18L,
23L, 20L, 18L, 17L, 15L), B = c(1029L, 1027L, 1026L, 1024L, 1023L,
1026L, 1025L, 1024L, 1023L, 1023L, 1034L, 1033L, 1032L, 1031L,
1030L), FM = c(14.9, 14.4, 14, 13.7, 13.6, 13.1, 12.8, 12.3,
12, 11.7, 12.8, 12, 11.4, 10.9, 10.4), GD = c(204L, 220L, 227L,
222L, 216L, 338L, 311L, 326L, 310L, 273L, 62L, 13L, 312L, 272L,
281L), MG = c(8.047, 9.835, 10.28, 13.41, 11.18, 9.388, 8.941,
8.494, 9.835, 10.73, 6.706, 7.153, 8.047, 8.047, 7.6), SR = c(522L,
603L, 604L, 526L, 248L, 569L, 653L, 671L, 616L, 487L, 972L, 1053L,
1061L, 1002L, 865L), WS2 = c(2.235, 3.576, 4.47, 4.47, 5.364,
4.023, 2.682, 3.576, 3.576, 4.023, 3.129, 3.129, 3.576, 2.682,
3.129), WD2 = c(200L, 201L, 206L, 210L, 211L, 319L, 315L, 311L,
302L, 290L, 49L, 39L, 15L, 348L, 329L)), .Names = c("TIMESTAMP",
"P", "WS", "WD", "AT", "FT", "H", "B", "FM", "GD", "MG", "SR",
"WS2", "WD2"), class = "data.frame", row.names = c(NA, -15L))
我正在尝试找出处理时间戳以供将来操作的最佳方法。我已经阅读过lubridate
(例如这里)zoo
和POSIXt
. 但是,我觉得可能存在一些我不知道的 r/timestamp技巧,这会使使用时间戳更容易(即我可能不完全理解时间戳)。
最终,我想做一些事情来创建一个新的数据框,该数据框由某个日期或时间范围内所有这些值的平均值组成。例如,每天 12:00 到 16:00 之间每个变量的平均值。
这三个软件包中的一个是否比另一个更适合执行此类任务?你能给我指出一个可以做我上面写的平均的例子或解决方案吗?或者,这些更适合计算时间(例如,某事之间的小时数、天数等 [例如到达和离开])还是可以用于处理其他数据帧任务的时间戳(例如平均)?