我正在遵循Java中的算法,第 5 部分:图形算法,第 3 版书的代码,并在第 294 页中描述了我们可以通过修改 Prim 的最小生成树 (MST) 算法来获得经典的 Dijkstra 算法(我测试并工作很好)通过以下方式:将优先级分配从P = e->wt()
边缘权重更改P = wt[v] + e->wt()
为从源到边缘目的地的距离。问题是,当我进行更改时,随后的条件永远不会评估为true
,这是可以理解的。wt
是一个双数组,初始化为 egDouble.MAX_VALUE
因此无论是什么v
和w
是,这个条件永远不会成立(假设非负权重):
P = wt[v] + e->wt();
if (P < wt[w]) { // this can never happen ... bug?
// ...
}
我检查了这本书的网站,没有发现任何勘误表。
这是我的自包含代码版本,带有可运行的 Main 和书中的测试用例:
更新:
wt[getSource().index] = 0.0;
在来自答案之一的反馈之后添加了初始化行。源顶点属于距离为零的 SPT。import java.util.*; public class AdjacencyList { //============================================================= // members //============================================================= private static class Edge { int source; int target; double weight; }; private static class Vertex { int index; String name; List<Edge> edges = new ArrayList<Edge>(); public Vertex(int index, String name) { this.index = index; this.name = name; } }; private static final int UNDEFINED = -1; private int edgesCount = 0; private final Vertex[] vertices; private final boolean digraph; private int orderCount; //============================================================= // public //============================================================= public AdjacencyList(int verticesCount, boolean digraph) { this.vertices = new Vertex[verticesCount]; this.digraph = digraph; } public Vertex createVertex(int index) { return createVertex(index, String.valueOf(index)); } public Vertex createVertex(int index, String name) { Vertex vertex = new Vertex(index, name); vertex.index = index; vertex.name = name; vertices[index] = vertex; return vertex; } public Edge addEdge(int begin, int end, double weight) { return addEdge(vertices[begin], vertices[end], weight); } public Edge addEdge(Vertex begin, Vertex end, double weight) { edgesCount++; Edge edge = new Edge(); edge.source = begin.index; edge.target = end.index; edge.weight = weight; vertices[begin.index].edges.add(edge); if (!digraph) { Edge reverse = new Edge(); reverse.source = end.index; reverse.target = begin.index; reverse.weight = edge.weight; vertices[end.index].edges.add(reverse); } return edge; } // inefficient find edge O(V) public Edge findEdge(int begin, int end) { Edge result = null; Vertex vertex = vertices[begin]; List<Edge> adjacency = vertex.edges; for (Edge edge : adjacency) { if (edge.target == end) { result = edge; break; } } return result; } // inefficient remove edge O(V) public void removeEdge(int begin, int end) { edgesCount--; removeOneEdge(begin, end); if (!digraph) { removeOneEdge(end, begin); } } public final Vertex[] getVertices() { return vertices; } public int getVerticesCount() { return vertices.length; } public int getEdgesCount() { return edgesCount; } public Vertex getSource() { return vertices[0]; } public Vertex getSink() { return vertices[vertices.length - 1]; } public void dijkstra() { int verticesCount = getVerticesCount(); double[] wt = new double[verticesCount]; for (int i = 0; i < wt.length; i++) { wt[i] = Double.MAX_VALUE; } wt[getSource().index] = 0.0; Edge[] fr = new Edge[verticesCount]; Edge[] mst = new Edge[verticesCount]; int min = -1; Edge edge = null; for (int v = 0; min != 0; v = min) { min = 0; for (int w = 1; w < verticesCount; w++) { if (mst[w] == null) { double P = 0.0; edge = findEdge(v, w); if (edge != null) { if ((P = wt[v] + edge.weight) < wt[w]) { wt[w] = P; fr[w] = edge; } } if (wt[w] < wt[min]) { min = w; } } } if (min != 0) { mst[min] = fr[min]; } } for (int v = 0; v < verticesCount; v++) { if (mst[v] != null) { System.out.print(mst[v].source + "->" + mst[v].target + " "); } } } public void pushRelabel() { // TODO } //============================================================= // private //============================================================= private void removeOneEdge(int begin, int end) { Vertex beginVertex = vertices[begin]; List<Edge> adjacency = beginVertex.edges; int position = -1; for (int i = 0; i < adjacency.size(); i++) { if (adjacency.get(i).target == end) { position = i; break; } } if (position != -1) { adjacency.remove(position); } } private static AdjacencyList createDijkstraGraph() { int numberOfVertices = 6; boolean directed = true; AdjacencyList graph = new AdjacencyList(numberOfVertices, directed); for (int i = 0; i < graph.getVerticesCount(); i++) { graph.createVertex(i); } graph.addEdge( 0, 1, .41); graph.addEdge( 1, 2, .51); graph.addEdge( 2, 3, .50); graph.addEdge( 4, 3, .36); graph.addEdge( 3, 5, .38); graph.addEdge( 3, 0, .45); graph.addEdge( 0, 5, .29); graph.addEdge( 5, 4, .21); graph.addEdge( 1, 4, .32); graph.addEdge( 4, 2, .32); graph.addEdge( 5, 1, .29); return graph; } /** * Test main * * @param args */ public static void main(String[] args) { // build the graph and test dijkstra shortest path AdjacencyList directedDijkstra = createDijkstraGraph(); // expected: System.out.println("\n\n*** testing dijkstra shortest path"); directedDijkstra.dijkstra(); } }