Given a polygon with N
vertexes and N
edges. There is an int number(could be negative) on every vertex and an operation in set (*,+)
on every edge. Every time, we remove an edge E from the polygon, merge the two vertexes linked by the edge (V1,V2)
to a new vertex with value: V1 op(E) V2
. The last case would be two vertexes with two edges, the result is the bigger one.
Return the max result value can be gotten from a given polygon.
For the last case we might not need two merge as the other number could be negative, so in that case we would just return the larger number.
How I am approaching the problem:
p[i,j] denotes the maximum value we can obtain by merging nodes from labelled i to j.
p[i,i] = v[i] -- base case
p[i,j] = p[i,k] operator in between p[k+1,j] , for k between i to j-1.
and then p[0,n] will be my answer.
Second point , i will have to start from all the vertices and do the same as above as this will be cyclic n vertices n edges.
The time complexity for this is n^3 *n i.e n^4 .
Can i do better then this ?