虽然 user1504495 在我使用它时已经简短地回答了。但不要使用整个地图实用程序库,而是使用此方法。
从您的活动课程中相应地传递参数:
if (area.containsLocation(Touchablelatlong, listLatlong, true))
isMarkerINSide = true;
else
isMarkerINSide = false;
并将以下内容放在单独的类中:
/**
* Computes whether the given point lies inside the specified polygon.
* The polygon is always cosidered closed, regardless of whether the last point equals
* the first or not.
* Inside is defined as not containing the South Pole -- the South Pole is always outside.
* The polygon is formed of great circle segments if geodesic is true, and of rhumb
* (loxodromic) segments otherwise.
*/
public static boolean containsLocation(LatLng point, List<LatLng> polygon, boolean geodesic) {
final int size = polygon.size();
if (size == 0) {
return false;
}
double lat3 = toRadians(point.latitude);
double lng3 = toRadians(point.longitude);
LatLng prev = polygon.get(size - 1);
double lat1 = toRadians(prev.latitude);
double lng1 = toRadians(prev.longitude);
int nIntersect = 0;
for (LatLng point2 : polygon) {
double dLng3 = wrap(lng3 - lng1, -PI, PI);
// Special case: point equal to vertex is inside.
if (lat3 == lat1 && dLng3 == 0) {
return true;
}
double lat2 = toRadians(point2.latitude);
double lng2 = toRadians(point2.longitude);
// Offset longitudes by -lng1.
if (intersects(lat1, lat2, wrap(lng2 - lng1, -PI, PI), lat3, dLng3, geodesic)) {
++nIntersect;
}
lat1 = lat2;
lng1 = lng2;
}
return (nIntersect & 1) != 0;
}
/**
* Wraps the given value into the inclusive-exclusive interval between min and max.
* @param n The value to wrap.
* @param min The minimum.
* @param max The maximum.
*/
static double wrap(double n, double min, double max) {
return (n >= min && n < max) ? n : (mod(n - min, max - min) + min);
}
/**
* Returns the non-negative remainder of x / m.
* @param x The operand.
* @param m The modulus.
*/
static double mod(double x, double m) {
return ((x % m) + m) % m;
}
/**
* Computes whether the vertical segment (lat3, lng3) to South Pole intersects the segment
* (lat1, lng1) to (lat2, lng2).
* Longitudes are offset by -lng1; the implicit lng1 becomes 0.
*/
private static boolean intersects(double lat1, double lat2, double lng2,
double lat3, double lng3, boolean geodesic) {
// Both ends on the same side of lng3.
if ((lng3 >= 0 && lng3 >= lng2) || (lng3 < 0 && lng3 < lng2)) {
return false;
}
// Point is South Pole.
if (lat3 <= -PI/2) {
return false;
}
// Any segment end is a pole.
if (lat1 <= -PI/2 || lat2 <= -PI/2 || lat1 >= PI/2 || lat2 >= PI/2) {
return false;
}
if (lng2 <= -PI) {
return false;
}
double linearLat = (lat1 * (lng2 - lng3) + lat2 * lng3) / lng2;
// Northern hemisphere and point under lat-lng line.
if (lat1 >= 0 && lat2 >= 0 && lat3 < linearLat) {
return false;
}
// Southern hemisphere and point above lat-lng line.
if (lat1 <= 0 && lat2 <= 0 && lat3 >= linearLat) {
return true;
}
// North Pole.
if (lat3 >= PI/2) {
return true;
}
// Compare lat3 with latitude on the GC/Rhumb segment corresponding to lng3.
// Compare through a strictly-increasing function (tan() or mercator()) as convenient.
return geodesic ?
tan(lat3) >= tanLatGC(lat1, lat2, lng2, lng3) :
mercator(lat3) >= mercatorLatRhumb(lat1, lat2, lng2, lng3);
}
/**
* Returns tan(latitude-at-lng3) on the great circle (lat1, lng1) to (lat2, lng2). lng1==0.
* See http://williams.best.vwh.net/avform.htm .
*/
private static double tanLatGC(double lat1, double lat2, double lng2, double lng3) {
return (tan(lat1) * sin(lng2 - lng3) + tan(lat2) * sin(lng3)) / sin(lng2);
}
/**
* Returns mercator Y corresponding to latitude.
* See http://en.wikipedia.org/wiki/Mercator_projection .
*/
static double mercator(double lat) {
return log(tan(lat * 0.5 + PI/4));
}
/**
* Returns mercator(latitude-at-lng3) on the Rhumb line (lat1, lng1) to (lat2, lng2). lng1==0.
*/
private static double mercatorLatRhumb(double lat1, double lat2, double lng2, double lng3) {
return (mercator(lat1) * (lng2 - lng3) + mercator(lat2) * lng3) / lng2;
}