105

我想制作这样的热图(显示在FlowingData上): 热图

源数据在这里,但是可以使用随机数据和标签,即

import numpy
column_labels = list('ABCD')
row_labels = list('WXYZ')
data = numpy.random.rand(4,4)

在 matplotlib 中制作热图很容易:

from matplotlib import pyplot as plt
heatmap = plt.pcolor(data)

我什至发现了一个看起来正确的颜色图参数:heatmap = plt.pcolor(data, cmap=matplotlib.cm.Blues)

但除此之外,我无法弄清楚如何显示列和行的标签并以正确的方向显示数据(原点位于左上角而不是左下角)。

试图操纵heatmap.axes(例如heatmap.axes.set_xticklabels = column_labels)都失败了。我在这里想念什么?

4

4 回答 4

123

这已经很晚了,但这是我对流动数据 NBA 热图的 python 实现。

更新时间:2014 年 1 月 4 日:谢谢大家

# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>

# ------------------------------------------------------------------------
# Filename   : heatmap.py
# Date       : 2013-04-19
# Updated    : 2014-01-04
# Author     : @LotzJoe >> Joe Lotz
# Description: My attempt at reproducing the FlowingData graphic in Python
# Source     : http://flowingdata.com/2010/01/21/how-to-make-a-heatmap-a-quick-and-easy-solution/
#
# Other Links:
#     http://stackoverflow.com/questions/14391959/heatmap-in-matplotlib-with-pcolor
#
# ------------------------------------------------------------------------

import matplotlib.pyplot as plt
import pandas as pd
from urllib2 import urlopen
import numpy as np
%pylab inline

page = urlopen("http://datasets.flowingdata.com/ppg2008.csv")
nba = pd.read_csv(page, index_col=0)

# Normalize data columns
nba_norm = (nba - nba.mean()) / (nba.max() - nba.min())

# Sort data according to Points, lowest to highest
# This was just a design choice made by Yau
# inplace=False (default) ->thanks SO user d1337
nba_sort = nba_norm.sort('PTS', ascending=True)

nba_sort['PTS'].head(10)

# Plot it out
fig, ax = plt.subplots()
heatmap = ax.pcolor(nba_sort, cmap=plt.cm.Blues, alpha=0.8)

# Format
fig = plt.gcf()
fig.set_size_inches(8, 11)

# turn off the frame
ax.set_frame_on(False)

# put the major ticks at the middle of each cell
ax.set_yticks(np.arange(nba_sort.shape[0]) + 0.5, minor=False)
ax.set_xticks(np.arange(nba_sort.shape[1]) + 0.5, minor=False)

# want a more natural, table-like display
ax.invert_yaxis()
ax.xaxis.tick_top()

# Set the labels

# label source:https://en.wikipedia.org/wiki/Basketball_statistics
labels = [
    'Games', 'Minutes', 'Points', 'Field goals made', 'Field goal attempts', 'Field goal percentage', 'Free throws made', 'Free throws attempts', 'Free throws percentage',
    'Three-pointers made', 'Three-point attempt', 'Three-point percentage', 'Offensive rebounds', 'Defensive rebounds', 'Total rebounds', 'Assists', 'Steals', 'Blocks', 'Turnover', 'Personal foul']

# note I could have used nba_sort.columns but made "labels" instead
ax.set_xticklabels(labels, minor=False)
ax.set_yticklabels(nba_sort.index, minor=False)

# rotate the
plt.xticks(rotation=90)

ax.grid(False)

# Turn off all the ticks
ax = plt.gca()

for t in ax.xaxis.get_major_ticks():
    t.tick1On = False
    t.tick2On = False
for t in ax.yaxis.get_major_ticks():
    t.tick1On = False
    t.tick2On = False

输出如下所示: 类似流动数据的NBA热图

这里有一个包含所有这些代码的 ipython 笔记本。我从“溢出”中学到了很多东西,所以希望有人会觉得这很有用。

于 2013-04-20T20:09:39.523 回答
12

python seaborn 模块基于 matplotlib,生成了一个非常漂亮的热图。

下面是为 ipython/jupyter notebook 设计的 seaborn 实现。

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# import the data directly into a pandas dataframe
nba = pd.read_csv("http://datasets.flowingdata.com/ppg2008.csv", index_col='Name  ')
# remove index title
nba.index.name = ""
# normalize data columns
nba_norm = (nba - nba.mean()) / (nba.max() - nba.min())
# relabel columns
labels = ['Games', 'Minutes', 'Points', 'Field goals made', 'Field goal attempts', 'Field goal percentage', 'Free throws made', 
          'Free throws attempts', 'Free throws percentage','Three-pointers made', 'Three-point attempt', 'Three-point percentage', 
          'Offensive rebounds', 'Defensive rebounds', 'Total rebounds', 'Assists', 'Steals', 'Blocks', 'Turnover', 'Personal foul']
nba_norm.columns = labels
# set appropriate font and dpi
sns.set(font_scale=1.2)
sns.set_style({"savefig.dpi": 100})
# plot it out
ax = sns.heatmap(nba_norm, cmap=plt.cm.Blues, linewidths=.1)
# set the x-axis labels on the top
ax.xaxis.tick_top()
# rotate the x-axis labels
plt.xticks(rotation=90)
# get figure (usually obtained via "fig,ax=plt.subplots()" with matplotlib)
fig = ax.get_figure()
# specify dimensions and save
fig.set_size_inches(15, 20)
fig.savefig("nba.png")

输出如下: seaborn nba 热图 我使用了 matplotlib Blues 颜色图,但个人觉得默认颜色相当漂亮。我使用 matplotlib 来旋转 x 轴标签,因为我找不到 seaborn 语法。正如 grexor 所指出的,有必要通过反复试验来指定尺寸(fig.set_size_inches),我觉得这有点令人沮丧。

正如 Paul H 所指出的,您可以轻松地将这些值添加到热图(annot=True),但在这种情况下,我认为它并没有改善这个数字。从 joelotz 的优秀答案中提取了几个代码片段。

于 2016-06-09T00:31:03.080 回答
11

主要问题是您首先需要设置 x 和 y 刻度的位置。此外,它有助于使用更面向对象的接口来连接 matplotlib。即,axes直接与对象交互。

import matplotlib.pyplot as plt
import numpy as np
column_labels = list('ABCD')
row_labels = list('WXYZ')
data = np.random.rand(4,4)
fig, ax = plt.subplots()
heatmap = ax.pcolor(data)

# put the major ticks at the middle of each cell, notice "reverse" use of dimension
ax.set_yticks(np.arange(data.shape[0])+0.5, minor=False)
ax.set_xticks(np.arange(data.shape[1])+0.5, minor=False)


ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(column_labels, minor=False)
plt.show()

希望有帮助。

于 2013-01-18T05:13:11.750 回答
4

有人编辑了这个问题以删除我使用的代码,所以我被迫将其添加为答案。感谢所有参与回答这个问题的人!我认为大多数其他答案都比这段代码更好,我只是将其留在这里以供参考。

感谢Paul Hunutbu(谁回答了这个问题),我得到了一些非常漂亮的输出:

import matplotlib.pyplot as plt
import numpy as np
column_labels = list('ABCD')
row_labels = list('WXYZ')
data = np.random.rand(4,4)
fig, ax = plt.subplots()
heatmap = ax.pcolor(data, cmap=plt.cm.Blues)

# put the major ticks at the middle of each cell
ax.set_xticks(np.arange(data.shape[0])+0.5, minor=False)
ax.set_yticks(np.arange(data.shape[1])+0.5, minor=False)

# want a more natural, table-like display
ax.invert_yaxis()
ax.xaxis.tick_top()

ax.set_xticklabels(column_labels, minor=False)
ax.set_yticklabels(row_labels, minor=False)
plt.show()

这是输出:

Matplotlib 热图

于 2016-09-22T08:45:39.737 回答