假设我有一个参数 x 并且有几行使用 x 来计算 y,现在有 10 个 x 值,我需要使用每个值来计算相应的 y,我不想每次都更改 x 并运行我的命令行 10 次,F# 中是否有任何语法允许我重复我已经编写的那些命令行,以便我只需要执行一次即可计算出所有 10 个 y 值?
提前致谢
编辑:我将代码粘贴在下面,基本上,我想要的是获得不同参数组合的 alpha,我的参数是“shreshold”、“WeeksBfReport”和“DaysBfExecution”。我有 30 组参数组合,所以我不想去更改参数并运行命令 30 次。有没有办法不这样做?
let shreshold= 2.0
let ReportDate = "2008/12/15"
let ExeDate = "2009/01/05"
let WeeksBfReport = 1
let DaysBfExecution = 3
let Rf=0.01
let DateIn=ReportDate.ToDateTimeExact("yyyy/MM/dd").AddWeeks(-WeeksBfReport)
let DateOut=ExeDate.ToDateTimeExact("yyyy/MM/dd").AddWorkDays(-DaysBfExecution)
let DateInString=DateIn.ToString("yyyy/MM/dd")
let DateOutString=DateOut.ToString("yyyy/MM/dd")
let mutable FundMV=0.
let FundTicker=csvTable.AsEnumerable().Select(fun (x:DataRow) -> x.Field<string>("Ticker")).ToArray()
for i in 0..csvTable.Rows.Count-1 do
let FundUnitPrice= float(csvTable.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = FundTicker.[i]).First().Field<string>(DateInString))
let FundShares= float(csvTable1.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = FundTicker.[i]).First().Field<string>(DateInString))
FundMV<-FundMV + FundUnitPrice*FundShares
printfn "%e" FundMV
//use TMV to calculate weights of CSI300 constitutes
let mutable csiTMV=0.
let CSITMV : float array = Array.zeroCreate 300
let DictionaryCSI = Dictionary<String,float>()
for i in 0..299 do
let TMV=float(csvTable3.Rows.[i].Field<string>(DateInString))
csiTMV<-csiTMV + TMV
CSITMV.[i] <- TMV
for i in 0..299 do
let Weight=CSITMV.[i]/csiTMV
DictionaryCSI.[csvTable3.Rows.[i].Field<string>("Stock")]<-Weight
let DictionaryOldOut = Dictionary<String,float>()
let array=csvTable2.AsEnumerable().Select(fun (x:DataRow) -> x.Field<string>("Stock")).ToArray()
let OldOutTMV=ResizeArray<float>()
let DictionaryOldOutWeight = Dictionary<string,float>()
let OldOutWeight : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
for i in 0..(csvTable2.Rows.Count/2)-1 do
let Weight=DictionaryCSI.Item(array.[i+(csvTable2.Rows.Count/2)])
DictionaryOldOutWeight.[csvTable2.Rows.[i+csvTable2.Rows.Count/2].Field<string>("Stock")]<-Weight
OldOutWeight.[i]<- Weight
DictionaryOldOut.[csvTable2.Rows.[i+csvTable2.Rows.Count/2].Field<string>("Stock")]<- Weight*FundMV //OldOut Moving Value
OldOutTMV.Add(Weight)
let OldOutTMVarray=OldOutTMV.ToArray() //create an array of OldOut weights and then sum up
let SumOldOutTMV=Array.fold (+) 0. OldOutTMVarray
let mutable NewInTMV=0.
let NewInWeight : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
let DictionaryNewIn = Dictionary<string,float>()
let DictionaryNewInWeight = Dictionary<string,float>()
for i in 0..csvTable3.Rows.Count-300-1 do
let TMV=float(csvTable3.Rows.[i+300].Field<string>(DateInString))
NewInTMV<-NewInTMV + TMV
let Weight=TMV/(csiTMV+NewInTMV-SumOldOutTMV)
NewInWeight.[i]<-Weight
DictionaryNewInWeight.[csvTable3.Rows.[i+300].Field<string>("Stock")]<-Weight
let MovingValue=Weight*FundMV
DictionaryNewIn.[csvTable3.Rows.[i+300].Field<string>("Stock")]<-MovingValue //NewIn Moving Value
let table2array=csvTable2.AsEnumerable().Select(fun (x:DataRow) -> x.Field<string>("Stock")).ToArray()
let NewInturnoverArray : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
for i in 0..(csvTable2.Rows.Count/2)-1 do
let lastday= float(csvTable2.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = table2array.[i]).First().Field<string>(DateInString))
let turnover = csvTable2.Rows.[i].ItemArray.Skip(3)|>Seq.map(fun (x:obj)-> System.Double.Parse(x.ToString()))|>Seq.toArray
let lastdayindex : (int) =
if lastday= 0. then
let lastdayfake=float(csvTable2.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = table2array.[i+2]).First().Field<string>(DateInString))
let turnoverfake = csvTable2.Rows.[i+2].ItemArray.Skip(3)|>Seq.map(fun (x:obj)-> System.Double.Parse(x.ToString()))|>Seq.toArray
Array.findIndex(fun elem -> elem=lastdayfake) turnoverfake
else
let lastdayfake=lastday
let turnoverfake=turnover
Array.findIndex(fun elem -> elem=lastdayfake) turnoverfake
printfn "%A" lastdayindex
let TurnoverNeed : float array = Array.zeroCreate 21
for t in 0..20 do
TurnoverNeed.[t] <- turnover.[lastdayindex - 20 + t]
let zerotwo : float array = Array.zeroCreate TurnoverNeed.Length
if TurnoverNeed=zerotwo then
let ave_daily_turnover = 0.
NewInturnoverArray.[i] <- ave_daily_turnover
else
let ave_daily_turnover = Seq.average(TurnoverNeed|>Seq.filter(fun x-> x > 0.))
NewInturnoverArray.[i] <- ave_daily_turnover
type totalinfo = {Name:String;Shock:float}
let NewIn=ResizeArray<totalinfo>()
for i in 0..(csvTable2.Rows.Count/2)-1 do
let MovingValue=DictionaryNewIn.Item(array.[i])
let Shock=MovingValue/NewInturnoverArray.[i]
let V= {Name=string(array.[i]); Shock=Shock}
NewIn.Add(V)
let NewInShock=NewIn.ToArray()
let OldOutturnoverArray : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
for i in 0..(csvTable2.Rows.Count/2)-1 do
let turnover = csvTable2.Rows.[i+csvTable2.Rows.Count/2].ItemArray.Skip(3)|>Seq.map(fun (x:obj)-> System.Double.Parse(x.ToString()))
let zero : float array = Array.zeroCreate (turnover|>Seq.toArray).Length
if turnover|>Seq.toArray=zero then
let ave_daily_turnover = 0.
OldOutturnoverArray.[i] <- ave_daily_turnover
else
let ave_daily_turnover = Seq.average(turnover|>Seq.filter(fun x-> x > 0.))
OldOutturnoverArray.[i] <- ave_daily_turnover
let OldOut=ResizeArray<totalinfo>()
for i in 0..(csvTable2.Rows.Count/2)-1 do
let MovingValue=DictionaryOldOut.Item(array.[i+csvTable2.Rows.Count/2])
let Shock=MovingValue/OldOutturnoverArray.[i]
let V= {Name=string(array.[i+csvTable2.Rows.Count/2]); Shock=Shock}
OldOut.Add(V)
let OldOutShock=OldOut.ToArray()
let DoIn=NewInShock |> Array.filter (fun t -> t.Shock >= shreshold)
let DoOut=OldOutShock |> Array.filter (fun t -> t.Shock >= shreshold)
let DoInTicker= Array.map (fun e -> e.Name) DoIn
let DoOutTicker= Array.map (fun e -> e.Name) DoOut
let DoInWeight : float array = Array.zeroCreate DoInTicker.Length
for i in 0..DoInTicker.Length-1 do
DoInWeight.[i] <- DictionaryNewInWeight.Item(DoInTicker.[i])
let TotalDoInWeight= Array.fold (+) 0. DoInWeight
let DoInRatioX : float array = Array.zeroCreate DoInTicker.Length
for i in 0..(DoInTicker.Length)-1 do
DoInRatioX.[i] <- DoInWeight.[i]/TotalDoInWeight
let Beta=csvTable2.AsEnumerable().Select(fun (x:DataRow) -> x.Field<string>("Beta")).ToArray()
//let NewInBeta : float array = Array.zeroCreate (csvTable2.Rows.Count/2)
let DictionaryNewInBeta = Dictionary<string,float>()
for i in 0..(csvTable2.Rows.Count/2)-1 do
// NewInBeta.[i] <- float(Beta.[i])
DictionaryNewInBeta.[csvTable3.Rows.[i+300].Field<string>("Stock")]<-float(Beta.[i])
let DoInBeta : float array = Array.zeroCreate DoInTicker.Length
for i in 0..DoInTicker.Length-1 do
DoInBeta.[i] <- DictionaryNewInBeta.Item(DoInTicker.[i])
let mutable PortfolioBeta=0.
for i in 0..(DoInTicker.Length)-1 do
PortfolioBeta <- PortfolioBeta + DoInRatioX.[i] * DoInBeta.[i]
let mutable PortfolioReturn= 0.
for i in 0..DoInTicker.Length-1 do
let PriceIn= float(csvTable4.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = DoInTicker.[i]).First().Field<string>(DateInString))
let PriceOut= float(csvTable4.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = DoInTicker.[i]).First().Field<string>(DateOutString))
PortfolioReturn <- PortfolioReturn + (1./float(DoInTicker.Length))*(PriceOut - PriceIn)/PriceIn
let IndexIn= float(csvTable4.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = "000300.SH").First().Field<string>(DateInString))
let IndexOut= float(csvTable4.AsEnumerable().Where(fun (x:DataRow) -> x.Field<string>(0) = "000300.SH").First().Field<string>(DateOutString))
let MarketReturn= (IndexOut-IndexIn)/IndexIn
let Alpha= PortfolioReturn-Rf-PortfolioBeta*(MarketReturn-Rf)