7

我想通过重复每个位 8 次来将 an 膨胀unsigned char到 an 。uint64_t例如

char -> uint64_t
0x00 -> 0x00
0x01 -> 0xFF
0x02 -> 0xFF00
0x03 -> 0xFFFF
0xAA -> 0xFF00FF00FF00FF00

我目前有以下实现,使用位移来测试是否设置了位,以完成此操作:

#include <stdint.h>
#include <inttypes.h>   

#define BIT_SET(var, pos) ((var) & (1 << (pos)))

static uint64_t inflate(unsigned char a)
{
    uint64_t MASK = 0xFF;
    uint64_t result = 0;
    for (int i = 0; i < 8; i++) {
        if (BIT_SET(a, i))
            result |= (MASK << (8 * i));    
    }

    return result;
} 

但是,我对 C 相当陌生,所以这种对个别位的摆弄让我有点不同,可能会有更好(即更有效)的方式来做到这一点。

编辑添加
好的,所以在尝试了表查找解决方案之后,结果如下。但是,请记住,我没有直接测试例程,而是作为更大函数的一部分(准确地说是二进制矩阵的乘法),所以这可能会影响结果的结果。因此,在我的计算机上,当乘以一百万个 8x8 矩阵时,并编译为:

  gcc -O2 -Wall -std=c99 foo.c

我有

./a.out original
real    0m0.127s
user    0m0.124s
sys     0m0.000s

./a.out table_lookup
real    0m0.012s
user    0m0.012s
sys     0m0.000s

所以至少在我的机器上(我应该提到一个虚拟机 64 位 Linux Mint),表查找方法似乎提供了大约 10 倍的加速,所以我会接受这个作为答案。

4

8 回答 8

7

如果您正在寻找效率,请使用查找表:一个包含 256 个条目的静态数组,每个条目都已包含所需的结果。您可以使用上面的代码来生成它。

于 2013-01-11T09:53:12.153 回答
6

在选定的架构(SSE、Neon)中,有快速向量操作可以加速此任务或旨在执行此任务。如果没有特殊说明,建议的查找表方法是最快和最便携的。

如果 2k 大小是个问题,可以模拟并行向量算术运算:

static uint64_t inflate_parallel(unsigned char a) {
  uint64_t vector = a * 0x0101010101010101ULL;
  // replicate the word all over qword
  // A5 becomes A5 A5 A5 A5 A5 A5 A5 A5
  vector &= 0x8040201008040201;  // becomes 80 00 20 00 00 04 00 01 <-- 
  vector += 0x00406070787c7e7f;  // becomes 80 40 80 70 78 80 7e 80
                                 // MSB is correct
  vector = (vector >> 7) & 0x0101010101010101ULL;  // LSB is correct
  return vector * 255;                             // all bits correct
}

编辑:2^31 次迭代,(四次展开以减轻循环评估)

time ./parallel            time ./original            time ./lookup
real        0m2.038s       real       0m14.161s       real      0m1.436s
user        0m2.030s       user       0m14.120s       user      0m1.430s
sys         0m0.000s       sys        0m0.000s        sys       0m0.000s

这大约是 7 倍的加速,而查找表提供了大约 10 倍的加速

于 2013-01-11T10:39:16.880 回答
3

在担心优化代码之前,您应该先分析代码的作用。

在我的本地编译器上,当值未知时,您的代码将完全内联、展开并变成 8 个常量 test + 或指令,并在编译时知道值时变成常量。我可能可以通过删除一些分支来稍微改进它,但是编译器自己做的是合理的工作。

优化循环有点毫无意义。表查找可能更有效,但可能会阻止编译器自己进行优化。

于 2013-01-11T10:03:25.553 回答
2

如果您愿意为此花费 256 * 8 = 2kB 的内存(即在内存方面效率降低,但在所需的 CPU 周期方面效率更高),最有效的方法是预先计算查找表:

static uint64_t inflate(unsigned char a) {
    static const uint64_t charToUInt64[256] = {
        0x0000000000000000, 0x00000000000000FF, 0x000000000000FF00, 0x000000000000FFFF,
        // ...
    };

    return charToUInt64[a];
}
于 2013-01-11T09:59:02.377 回答
2

可以通过将源的每个位移动到适当目标字节的 lsb(0 → 0, 1 → 8, 2 → 16, ...., 7 → 56)来实现所需的功能,然后扩展每个 lsb 以覆盖整个字节,这很容易通过乘以0xff(255) 来完成。我们可以使用整数乘法来并行移动多个位,而不是使用移位单独将位移动到位,然后组合结果。为了防止自重叠,我们可以以这种方式仅移动最低有效的七个源位,但需要通过移位单独移动源 msb。

这导致以下 ISO-C99 实施:

#include <stdint.h>

/* expand each bit in input into one byte in output */
uint64_t fast_inflate (uint8_t a)
{
    const uint64_t spread7 = (1ULL << 42) | (1ULL << 35) | (1ULL << 28) | (1ULL << 21) | 
                             (1ULL << 14) | (1ULL <<  7) | (1UL <<   0);
    const uint64_t byte_lsb = (1ULL << 56) | (1ULL << 48) | (1ULL << 40) | (1ULL << 32) |
                              (1ULL << 24) | (1ULL << 16) | (1ULL <<  8) | (1ULL <<  0);
    uint64_t r;
    /* spread bits to lsbs of each byte */
    r = (((uint64_t)(a & 0x7f) * spread7) + ((uint64_t)a << 49));
    /* extract the lsbs of all bytes */
    r = r & byte_lsb;
    /* fill each byte with its lsb */
    r = r * 0xff;
    return r;
}

#define BIT_SET(var, pos) ((var) & (1 << (pos)))
static uint64_t inflate(unsigned char a)
{
    uint64_t MASK = 0xFF;
    uint64_t result = 0;
    for (int i = 0; i < 8; i++) {
        if (BIT_SET(a, i))
            result |= (MASK << (8 * i));    
    }
    return result;
}

#include <stdio.h>
#include <stdlib.h>

int main (void)
{
    uint8_t a = 0;
    do {
        uint64_t res = fast_inflate (a);
        uint64_t ref = inflate (a);
        if (res != ref) {
            printf ("error @ %02x: fast_inflate = %016llx  inflate = %016llx\n", 
                    a, res, ref);
            return EXIT_FAILURE;
        }
        a++;
    } while (a);
    printf ("test passed\n");
    return EXIT_SUCCESS;
}

大多数 x64 编译器将以fast_inflate()直接的方式编译。例如,我的英特尔编译器版本 13.1.3.198 在使用 构建时/Ox,会生成以下 11 条指令序列。请注意,最终的乘法0xff实际上是作为移位和减法序列实现的。

fast_inflate    PROC 
        mov       rdx, 040810204081H
        movzx     r9d, cl
        and       ecx, 127
        mov       r8, 0101010101010101H
        imul      rdx, rcx
        shl       r9, 49
        add       r9, rdx
        and       r9, r8
        mov       rax, r9
        shl       rax, 8
        sub       rax, r9
        ret
于 2019-03-08T07:38:43.240 回答
2

这是仅使用简单算术的另一种方法:

uint64_t inflate_chqrlie(uint8_t value) {
    uint64_t x = value;
    x = (x | (x << 28));
    x = (x | (x << 14));
    x = (x | (x <<  7)) & 0x0101010101010101ULL;
    x = (x << 8) - x;
    return x;
}

phuclv 使用乘法和掩码的另一个非常有效和简洁的方法:

static uint64_t inflate_phuclv(uint8_t b) {
    uint64_t MAGIC = 0x8040201008040201ULL;
    uint64_t MASK  = 0x8080808080808080ULL;
    return ((MAGIC * b) & MASK) >> 7;
}

另一个带有一个小的查找表:

static uint32_t const lut_4_32[16] = {
    0x00000000, 0x000000FF, 0x0000FF00, 0x0000FFFF, 
    0x00FF0000, 0x00FF00FF, 0x00FFFF00, 0x00FFFFFF, 
    0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF, 
    0xFFFF0000, 0xFFFF00FF, 0xFFFFFF00, 0xFFFFFFFF, 
};

static uint64_t inflate_lut32(uint8_t b) {
    return lut_4_32[b & 15] | ((uint64_t)lut_4_32[b >> 4] << 32);
}

我编写了一个基准测试程序来确定我系统上不同方法的相对性能(x86_64-apple-darwin16.7.0,Apple LLVM 版本 9.0.0(clang-900.0.39.2,clang -O3)。

结果表明,我的函数inflate_chqrlie比简单方法快,但比其他复杂版本慢,所有这些都通过inflate_lut64在缓存最佳情况下使用 2KB 查找表而被击败。

该函数inflate_lut32使用小得多的查找表(64 字节而不是 2KB)不如 快inflate_lut64,但对于 32 位架构来说似乎是一个很好的折衷方案,因为它仍然比所有其他替代方案快得多。

64 位基准测试:

             inflate: 0, 848.316ms
        inflate_Curd: 0, 845.424ms
     inflate_chqrlie: 0, 371.502ms
 fast_inflate_njuffa: 0, 288.669ms
   inflate_parallel1: 0, 242.827ms
   inflate_parallel2: 0, 315.105ms
   inflate_parallel3: 0, 363.379ms
   inflate_parallel4: 0, 304.051ms
   inflate_parallel5: 0, 301.205ms
      inflate_phuclv: 0, 109.130ms
       inflate_lut32: 0, 197.178ms
       inflate_lut64: 0, 25.160ms

32 位基准测试:

             inflate: 0, 1451.464ms
        inflate_Curd: 0, 955.509ms
     inflate_chqrlie: 0, 385.036ms
 fast_inflate_njuffa: 0, 463.212ms
   inflate_parallel1: 0, 468.070ms
   inflate_parallel2: 0, 570.107ms
   inflate_parallel3: 0, 511.741ms
   inflate_parallel4: 0, 601.892ms
   inflate_parallel5: 0, 506.695ms
      inflate_phuclv: 0, 192.431ms
       inflate_lut32: 0, 140.968ms
       inflate_lut64: 0, 28.776ms

这是代码:

#include <stdio.h>
#include <stdint.h>
#include <time.h>

static uint64_t inflate(unsigned char a) {
#define BIT_SET(var, pos) ((var) & (1 << (pos)))
    uint64_t MASK = 0xFF;
    uint64_t result = 0;
    for (int i = 0; i < 8; i++) {
        if (BIT_SET(a, i))
            result |= (MASK << (8 * i));
    }

    return result;
}

static uint64_t inflate_Curd(unsigned char a) {
    uint64_t mask = 0xFF;
    uint64_t result = 0;
    for (int i = 0; i < 8; i++) {
        if (a & 1)
            result |= mask;
        mask <<= 8;
        a >>= 1;
    }
    return result;
}

uint64_t inflate_chqrlie(uint8_t value) {
    uint64_t x = value;
    x = (x | (x << 28));
    x = (x | (x << 14));
    x = (x | (x <<  7)) & 0x0101010101010101ULL;
    x = (x << 8) - x;
    return x;
}

uint64_t fast_inflate_njuffa(uint8_t a) {
    const uint64_t spread7 = (1ULL << 42) | (1ULL << 35) | (1ULL << 28) | (1ULL << 21) |
        (1ULL << 14) | (1ULL <<  7) | (1UL <<   0);
    const uint64_t byte_lsb = (1ULL << 56) | (1ULL << 48) | (1ULL << 40) | (1ULL << 32) |
        (1ULL << 24) | (1ULL << 16) | (1ULL <<  8) | (1ULL <<  0);
    uint64_t r;
    /* spread bits to lsbs of each byte */
    r = (((uint64_t)(a & 0x7f) * spread7) + ((uint64_t)a << 49));
    /* extract the lsbs of all bytes */
    r = r & byte_lsb;
    /* fill each byte with its lsb */
    r = r * 0xff;
    return r;
}

// Aki Suuihkonen: 1.265
static uint64_t inflate_parallel1(unsigned char a) {
    uint64_t vector = a * 0x0101010101010101ULL;
    // replicate the word all over qword
    // A5 becomes A5 A5 A5 A5 A5 A5 A5 A5
    vector &= 0x8040201008040201;  // becomes 80 00 20 00 00 04 00 01 <--
    vector += 0x00406070787c7e7f;  // becomes 80 40 80 70 78 80 7e 80
    // MSB is correct
    vector = (vector >> 7) & 0x0101010101010101ULL;  // LSB is correct
    return vector * 255;                             // all bits correct
}

// By seizet and then combine: 1.583
static uint64_t inflate_parallel2(unsigned char a) {
    uint64_t vector1 = a * 0x0002000800200080ULL;
    uint64_t vector2 = a * 0x0000040010004001ULL;
    uint64_t vector = (vector1 & 0x0100010001000100ULL) | (vector2 & 0x0001000100010001ULL);
    return vector * 255;
}

// Stay in 32 bits as much as possible: 1.006
static uint64_t inflate_parallel3(unsigned char a) {
    uint32_t vector1 = (( (a & 0x0F)       * 0x00204081) & 0x01010101) * 255;
    uint32_t vector2 = ((((a & 0xF0) >> 4) * 0x00204081) & 0x01010101) * 255;
    return (((uint64_t)vector2) << 32) | vector1;
}

// Do the common computation in 64 bits: 0.915
static uint64_t inflate_parallel4(unsigned char a) {
    uint32_t vector1 =  (a & 0x0F)       * 0x00204081;
    uint32_t vector2 = ((a & 0xF0) >> 4) * 0x00204081;
    uint64_t vector = (vector1 | (((uint64_t)vector2) << 32)) & 0x0101010101010101ULL;
    return vector * 255;
}

// Some computation is done in 64 bits a little sooner: 0.806
static uint64_t inflate_parallel5(unsigned char a) {
    uint32_t vector1 = (a & 0x0F) * 0x00204081;
    uint64_t vector2 = (a & 0xF0) * 0x002040810000000ULL;
    uint64_t vector = (vector1 | vector2) & 0x0101010101010101ULL;
    return vector * 255;
}

static uint64_t inflate_phuclv(uint8_t b) {
    uint64_t MAGIC = 0x8040201008040201ULL;
    uint64_t MASK  = 0x8080808080808080ULL;
    return ((MAGIC * b) & MASK) >> 7;
}

static uint32_t const lut_4_32[16] = {
    0x00000000, 0x000000FF, 0x0000FF00, 0x0000FFFF, 
    0x00FF0000, 0x00FF00FF, 0x00FFFF00, 0x00FFFFFF, 
    0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF, 
    0xFFFF0000, 0xFFFF00FF, 0xFFFFFF00, 0xFFFFFFFF, 
};

static uint64_t inflate_lut32(uint8_t b) {
    return lut_4_32[b & 15] | ((uint64_t)lut_4_32[b >> 4] << 32);
}

static uint64_t lut_8_64[256];

static uint64_t inflate_lut64(uint8_t b) {
    return lut_8_64[b];
}

#define ITER  1000000

int main() {
    clock_t t;
    uint64_t x;

    for (int b = 0; b < 256; b++)
        lut_8_64[b] = inflate((uint8_t)b);

#define TEST(func)  do {                                \
        t = clock();                                    \
        x = 0;                                          \
        for (int i = 0; i < ITER; i++) {                \
            for (int b = 0; b < 256; b++)               \
                x ^= func((uint8_t)b);                  \
        }                                               \
        t = clock() - t;                                \
        printf("%20s: %llu, %.3fms\n",                  \
               #func, x, t * 1000.0 / CLOCKS_PER_SEC);  \
       } while (0)

    TEST(inflate);
    TEST(inflate_Curd);
    TEST(inflate_chqrlie);
    TEST(fast_inflate_njuffa);
    TEST(inflate_parallel1);
    TEST(inflate_parallel2);
    TEST(inflate_parallel3);
    TEST(inflate_parallel4);
    TEST(inflate_parallel5);
    TEST(inflate_phuclv);
    TEST(inflate_lut32);
    TEST(inflate_lut64);

    return 0;
}
于 2019-03-08T09:09:54.500 回答
1

与@Aki 答案相同主题的变体。其中一些在这里更好,但这可能取决于您的编译器和目标机器(它们应该更适合 Aki 的功能的超标量处理器,即使它们做更多的工作,因为数据依赖性更少)

// Aki Suuihkonen: 1.265
static uint64_t inflate_parallel1(unsigned char a) {
  uint64_t vector = a * 0x0101010101010101ULL;
  vector &= 0x8040201008040201;
  vector += 0x00406070787c7e7f;
  vector = (vector >> 7) & 0x0101010101010101ULL; 
  return vector * 255;
}

// By seizet and then combine: 1.583
static uint64_t inflate_parallel2(unsigned char a) {
    uint64_t vector1 = a * 0x0002000800200080ULL;
    uint64_t vector2 = a * 0x0000040010004001ULL;
    uint64_t vector = (vector1 & 0x0100010001000100ULL) | (vector2 & 0x0001000100010001ULL);
    return vector * 255;
}

// Stay in 32 bits as much as possible: 1.006
static uint64_t inflate_parallel3(unsigned char a) {
    uint32_t vector1 = (( (a & 0x0F)       * 0x00204081) & 0x01010101) * 255;
    uint32_t vector2 = ((((a & 0xF0) >> 4) * 0x00204081) & 0x01010101) * 255;
    return (((uint64_t)vector2) << 32) | vector1;
}

// Do the common computation in 64 bits: 0.915
static uint64_t inflate_parallel4(unsigned char a) {
    uint32_t vector1 =  (a & 0x0F)       * 0x00204081;
    uint32_t vector2 = ((a & 0xF0) >> 4) * 0x00204081;
    uint64_t vector = (vector1 | (((uint64_t)vector2) << 32)) & 0x0101010101010101ULL;
    return vector * 255;
}

// Some computation is done in 64 bits a little sooner: 0.806
static uint64_t inflate_parallel5(unsigned char a) {
    uint32_t vector1 = (a & 0x0F) * 0x00204081;
    uint64_t vector2 = (a & 0xF0) * 0x002040810000000ULL;
    uint64_t vector = (vector1 | vector2) & 0x0101010101010101ULL;
    return vector * 255;
}
于 2013-01-11T12:51:42.690 回答
0

两个小的优化:
一个用于测试输入中的位(a 将被破坏,但这无关紧要)
另一个用于移动掩码。

static uint64_t inflate(unsigned char a)
{
    uint64_t mask = 0xFF;
    uint64_t result = 0;
    for (int i = 0; i < 8; i++) {
        if (a & 1)
            result |= mask;
        mask <<= 8;    
        a >>= 1;
    }

    return result;
} 

也许您也可以用“while (a)”循环替换“for (int i = 0; i < 8; i++)”循环。但是,这只有在右移 a >>=1 无符号工作时才有效(据我所知,C 标准允许编译器对其进行有符号或无符号操作)。否则在某些情况下你会出现无限循环。

编辑:
为了查看结果,我用gcc -std=c99 -S source.c. 快速浏览一下生成的汇编器输出可以看出,上面显示的优化产生了 ca. 1/3 查看器说明,其中大部分在循环内。

于 2013-01-11T09:57:30.637 回答