-1

我正在从现有的应用程序开发拼写检查器应用程序,任何人都可以帮助我更改这部分代码,我无法将指针移植stackalloc到 Java,因为不存在等效项。具有完全相同功能的 java 方法。

public static unsafe double GNULevenstein(string word1, string word2)
    {
        // this algorithm normally computes un-normalized distance between two string.
        fixed (char* word1Ptr = word1)
        fixed (char* word2Ptr = word2)
        {
            char* pointerToWord1 = word1Ptr;
            char* pointerToWord2 = word2Ptr;

            /* skip equal start sequence, if any */
            if (word1.Length >= word2.Length)
            {
                while (*pointerToWord1 == *pointerToWord2)
                {
                    /* if we already used up one string,
                     * then the result is the length of the other */
                    if (*pointerToWord1 == '\0') break;
                    pointerToWord1++; 
                    pointerToWord2++;
                }
            }
            else // wordl < word2
            {
                while (*pointerToWord1 == *pointerToWord2)
                {
                    /* if we already used up one string,
                     * then the result is the length of the other */
                    if (*pointerToWord2 == '\0') break;
                    pointerToWord1++; 
                    pointerToWord2++;
                }
            }

            /* length count #1*/
            int len1 = word1.Length - (int)(pointerToWord1 - word1Ptr);
            int len2 = word2.Length - (int)(pointerToWord2 - word2Ptr);


            /* if we already used up one string, then
             the result is the length of the other */
            if (*pointerToWord1 == '\0') 
                return ExportResult( len2 , word1.Length,word2.Length , false);
            if (*pointerToWord2 == '\0')
                return ExportResult(len1, word1.Length, word2.Length, false);

            /* length count #2*/
            pointerToWord1 += len1;
            pointerToWord2 += len2;

            /* cut of equal tail sequence, if any */
            while (*--pointerToWord1 == *--pointerToWord2)
            {
                len1--; 
                len2--;
            }

            /* reset pointers, adjust length */
            pointerToWord1 -= len1++;
            pointerToWord2 -= len2++;

            /* possible dist to great? */
            //if ((len1 - len2 >= 0 ? len1 - len2 : -(len1 - len2)) >= char.MaxValue) return 1;
            if (Math.Abs(len1 - len2) >= char.MaxValue)
                return ExportResult(1, false);  // no similarity

            char* tmp;
            /* swap if l2 longer than l1 */
            if (len1 < len2)
            {
                tmp = pointerToWord1; 
                pointerToWord1 = pointerToWord2; 
                pointerToWord2 = tmp;
                len1 ^= len2; 
                len2 ^= len1; 
                len1 ^= len2;
            }

            /* fill initial row */

            int i, j, n;

            n = (*pointerToWord1 != *pointerToWord2) ? 1 : 0;
            char* r = stackalloc char[len1 * 2];

            char* p1, p2;
            for (i = 0, p1 = r; i < len1; i++, *p1++ = (char)n++, p1++) 
            { /*empty*/}


            /* calc. rowwise */
            for (j = 1; j < len2; j++)
            {
                /* init pointers and col#0 */
                p1 = r + ((j & 1) == 0 ? 1 : 0);
                p2 = r + (j & 1);
                n = *p1 + 1;
                *p2++ = (char)n; p2++;
                pointerToWord2++;

                /* foreach column */
                for (i = 1; i < len1; i++)
                {
                    if (*p1 < n) n = *p1 + (*(pointerToWord1 + i) != *pointerToWord2 ? 1 : 0); /* replace cheaper than delete? */
                    p1++;
                    if (*++p1 < n) n = *p1 + 1; /* insert cheaper then insert ? */
                    *p2++ = (char)n++; /* update field and cost for next col's delete */
                    p2++;
                }
            }

            /* return result */
            return ExportResult( n - 1, word1.Length, word2.Length, false);
        }


    }
4

1 回答 1

3

该方法看起来像是从 C/C++ 懒惰地移植而不是用 C# 编写的。C# 中的字符串操作通常足够快,以至于unsafe直接使用和处理char*s 是浪费时间和精力......

我只是用谷歌搜索了方法名称,看起来你只想要Levenshtein distance的 Java 实现,所以,来自同一个链接:

public class LevenshteinDistance {
        private static int minimum(int a, int b, int c) {
                return Math.min(Math.min(a, b), c);
        }

        public static int computeLevenshteinDistance(CharSequence str1,
                        CharSequence str2) {
                int[][] distance = new int[str1.length() + 1][str2.length() + 1];

                for (int i = 0; i <= str1.length(); i++)
                        distance[i][0] = i;
                for (int j = 1; j <= str2.length(); j++)


                distance[0][j] = j;

            for (int i = 1; i <= str1.length(); i++)
                    for (int j = 1; j <= str2.length(); j++)
                            distance[i][j] = minimum(
                                            distance[i - 1][j] + 1,
                                            distance[i][j - 1] + 1,
                                            distance[i - 1][j - 1]
                                                            + ((str1.charAt(i - 1) == str2.charAt(j - 1)) ? 0
                                                                            : 1));

            return distance[str1.length()][str2.length()];
    }
}
于 2013-01-10T01:00:41.070 回答