我正在使用嵌入了 read_csv 的字典理解来构建字典。这可以很好地构建字典,但是当我将其推送到 DataFrame 中时,我的所有数据都变为 null 并且日期也变得非常古怪。这是示例代码和输出:
In [129]: a= {x.split(".")[0] : read_csv(x, parse_dates=True, index_col=[0])["Settle"] for x in t[:2]}
In [130]: a
Out[130]:
{'SPH2010': Date
2010-03-19 1172.95
2010-03-18 1166.10
2010-03-17 1165.70
2010-03-16 1159.50
2010-03-15 1150.30
2010-03-12 1151.30
2010-03-11 1150.60
2010-03-10 1145.70
2010-03-09 1140.50
2010-03-08 1137.10
2010-03-05 1136.50
2010-03-04 1122.30
2010-03-03 1118.60
2010-03-02 1117.40
2010-03-01 1114.60
...
2008-04-10 1370.4
2008-04-09 1367.7
2008-04-08 1378.7
2008-04-07 1378.4
2008-04-04 1377.8
2008-04-03 1379.9
2008-04-02 1377.7
2008-04-01 1376.6
2008-03-31 1329.1
2008-03-28 1324.0
2008-03-27 1334.7
2008-03-26 1340.7
2008-03-25 1357.0
2008-03-24 1357.3
2008-03-20 1329.8
Name: Settle, Length: 495,
'SPM2011': Date
2011-06-17 1279.4
2011-06-16 1269.0
2011-06-15 1265.4
2011-06-14 1289.9
2011-06-13 1271.6
2011-06-10 1269.2
2011-06-09 1287.4
2011-06-08 1277.0
2011-06-07 1284.8
2011-06-06 1285.0
2011-06-03 1296.3
2011-06-02 1312.4
2011-06-01 1312.1
2011-05-31 1343.9
2011-05-27 1329.9
...
2009-07-10 856.6
2009-07-09 861.2
2009-07-08 856.0
2009-07-07 861.7
2009-07-06 877.9
2009-07-02 875.8
2009-07-01 902.6
2009-06-30 900.3
2009-06-29 908.0
2009-06-26 901.1
2009-06-25 903.8
2009-06-24 885.2
2009-06-23 877.6
2009-06-22 876.0
2009-06-19 903.4
Name: Settle, Length: 497}
In [131]: DataFrame(a)
Out[131]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 806 entries, 2189-09-10 03:33:28.879144 to 1924-01-20 06:06:06.621835
Data columns:
SPH2010 0 non-null values
SPM2011 0 non-null values
dtypes: float64(2)
谢谢!
编辑:
我也试过用 concat 做这个,我得到了相同的结果。