Suppose I have a vector J of jump sizes and an initial starting point X_0. Also I have boundaries 0, B (assume 0 < X_0 < B). I want to do a random walk where X_i = [min(X_{i-1} + J_i,B)]^+. (positive part). Basically if it goes over a boundary, it is made equal to the boundary. Anyone know a vectorized way to do this? The current way I am doing it consists of doing cumsums and then finding places where it violates a condition, and then starting from there and repeating the cumsum calculation, etc until I find that I stop violating the boundaries. It works when the boundaries are rarely hit, but if they are hit all the time, it basically becomes a for loop.
In the code below, I am doing this across many samples. To 'fix' the ones that go out of the boundary, I have to loop through the samples to check...(don't think there is a vectorized 'find')
% X_init is a row vector describing initial resource values to use for
% each sample
% J is matrix where each col is a sequence of Jumps (columns = sample #)
% In this code the jumps are subtracted, but same thing
X_intvl = repmat(X_init,NumJumps,1) - cumsum(J);
X = [X_init; X_intvl];
for sample = 1:NumSamples
k = find(or(X_intvl(:,sample) > B, X_intvl(:,sample) < 0),1);
while(~isempty(k))
change = X_intvl(k-1,sample) - X_intvl(k,sample);
X_intvl(k:end,sample) = X_intvl(k:end,sample)+change;
k = find(or(X_intvl(:,sample) > B, X_intvl(:,sample) < 0),1);
end
end