我使用 Matlab 创建了反向传播神经网络。我尝试使用 Matlab 实现 XOR 门,然后获取其权重和偏差以在 java 中创建神经网络。网络由 2 个输入神经元、2 个隐藏层组成,每个隐藏层使用 2 个神经元和 1 个输出神经元。在训练网络之后,我得到了以下权重和偏差:
clear;
clc;
i = [0 0 1 1; 0 1 0 1];
o = [0 1 1 0];
net = newff(i,o,{2,2},{'tansig','logsig','purelin'});
net.IW{1,1} = [
    -5.5187   -5.4490;
     3.7332    2.7697
];
net.LW{2,1} = [
   -2.8093   -3.0692;
   -1.6685    6.7527
];
net.LW{3,2} = [
    -4.9318   -0.9651
];
net.b{1,1} = [
    2.1369;
    2.6529
];
net.b{2,1} = [
    -0.2274;
    -4.9512
];
net.b{3,1} = [
    1.4848
];
input  = net.IW{1,1};
layer  = net.LW{2,1};
output = net.LW{3,2};
biasinput = net.b{1,1};
biaslayer = net.b{2,1};
biasoutput= net.b{3,1};
a = sim(net,i);
a;
我使用 1 和 1 作为输入来模拟它,得到以下结果:
>> f = [1;1]
f =
     1
     1
>> sim(net,f)
ans =
   -0.1639
然后我尝试制作简单的java代码来计算这个神经网络。我的代码:
public class Xor {
    //Value of neuron
    static double[] neuroninput    = new double[2];
    static double[] neuronhidden1  = new double[2];
    static double[] neuronhidden2  = new double[2];
    static double[] neuronoutput   = new double[2];
    //Weight variable init
    //For first hidden layer
    static double[] weighthidden11 = new double[2];
    static double[] weighthidden12 = new double[2];
    //for second hidden layer
    static double[] weighthidden21 = new double[2];
    static double[] weighthidden22 = new double[2];
    //for output layer
    static double[] weightoutput   = new double[2];
    //End of weight variable init
    //Bias value input
    static double[] biashidden1    = new double[2];
    static double[] biashidden2    = new double[2];
    static double[] biasoutput     = new double[1];
    public static void main(String[] args) {
        neuroninput[0] = 1;
        neuroninput[1] = 1;
        weighthidden11[0] = -5.5187;
        weighthidden11[1] = -5.4490;
        weighthidden12[0] =  3.7332;
        weighthidden12[1] =  2.7697;
        weighthidden21[0] = -2.8093;
        weighthidden21[1] = -3.0692;
        weighthidden22[0] = -1.6685;
        weighthidden22[1] =  6.7527;
        weightoutput[0]    = -4.9318;
        weightoutput[1]    = -0.9651;
        biashidden1[0] = 2.1369;
        biashidden1[1] = 2.6529;
        biashidden2[0] = -0.2274;
        biashidden2[1] = -4.9512;
        biasoutput[0]  = 1.4848;
        //Counting each neuron (Feed forward)
        neuronhidden1[0] = sigma(neuroninput,weighthidden11,biashidden1[0]);
        neuronhidden1[0] = tansig(neuronhidden1[0]);
        neuronhidden1[1] = sigma(neuroninput,weighthidden12,biashidden1[1]);
        neuronhidden1[1] = tansig(neuronhidden1[1]);
        neuronhidden2[0] = sigma(neuronhidden1,weighthidden21,biashidden2[0]);
        neuronhidden2[0] = logsig(neuronhidden2[0]);
        neuronhidden2[1] = sigma(neuronhidden1,weighthidden22,biashidden2[1]);
        neuronhidden2[1] = logsig(neuronhidden2[1]);
        neuronoutput[0] = sigma(neuronhidden2,weightoutput,biasoutput[0]);
        neuronoutput[0] = purelin(neuronoutput[0]);
        System.out.println(neuronoutput[0]);
    }
    static double tansig(double x) {
        double value = 0;
        value = (Math.exp(x) - Math.exp(-x)) / (Math.exp(x) + Math.exp(-x));
        return value;
    }
    static double logsig(double x) {
        double value = 0;
        value = 1 / (1+Math.exp(-x));
        return value;
    }
    static double purelin(double x) {
        double value = x;
        return value;
    }
    static double sigma(double[] val, double[] weight, double hidden) {
        double value = 0;
        for (int i = 0; i < val.length; i++) {
            value += (val[i] * weight[i]);
            //System.out.println(val[i]);
        }
        value += hidden;
        return value;
    }
}
但结果如下:
-1.3278721528152158
我的问题,将重量和偏差值从 matlab 导出到 java 是否有任何错误或我的错误?也许我在我的java程序中犯了错误?非常感谢你..