为了后代,以免对此有任何疑问,让我们考虑以下测试工具,它内置在一个简单的空应用程序模板中。它使用每种机制执行 1000 次操作,并且还有一个运行循环观察器,因此我们可以看到我们排队的异步任务如何与主运行循环的旋转相关联。它记录到控制台,但异步执行,因此成本NSLog
不会混淆我们的测量。它还在入队//任务时故意阻塞主线程NSOperations
,dispatch_asyncs
以便performSelectors
入队的行为也不会干扰。这是代码:
#import "NSAppDelegate.h"
dispatch_queue_t gLogQueue;
#define NSLogAsync(...) dispatch_async(gLogQueue, ^{ NSLog(__VA_ARGS__); });
@implementation NSAppDelegate
{
dispatch_group_t g;
NSUInteger numOps;
useconds_t usleepDuration;
}
static void MyCFRunLoopObserverCallBack(CFRunLoopObserverRef observer, CFRunLoopActivity activity, void *info);
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
// parameters of test
numOps = 1000;
usleepDuration = 1000;
// Set up a serial queue so we can keep the cost of calling NSLog more or less out of our test case.
gLogQueue = dispatch_queue_create(NULL, DISPATCH_QUEUE_SERIAL);
// Group allows us to wait for one test to finish before the next one begins
g = dispatch_group_create();
// Insert code here to initialize your application
CFRunLoopObserverRef rlo = CFRunLoopObserverCreate(NULL, kCFRunLoopAllActivities, YES, 0, MyCFRunLoopObserverCallBack, NULL);
CFRunLoopAddObserver(CFRunLoopGetCurrent(), rlo, kCFRunLoopCommonModes);
CFRelease(rlo);
NSCondition* cond = [[NSCondition alloc] init];
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSTimeInterval start = 0, end = 0;
// pause the main thread
dispatch_async(dispatch_get_main_queue(), ^{
[cond lock];
[cond signal];
[cond wait];
[cond unlock];
});
// wait for the main thread to be paused
[cond lock];
[cond wait];
// NSOperationQueue
for (NSUInteger i = 0; i < numOps; ++i)
{
dispatch_group_enter(g);
[[NSOperationQueue mainQueue] addOperationWithBlock:^{
NSLogAsync(@"NSOpQ task #%@", @(i));
usleep(usleepDuration); // simulate work
dispatch_group_leave(g);
}];
}
// unpause the main thread
[cond signal];
[cond unlock];
// mark start time
start = [NSDate timeIntervalSinceReferenceDate];
// wait for it to be done
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
end = [NSDate timeIntervalSinceReferenceDate];
NSTimeInterval opQDuration = end - start;
NSLogAsync(@"NSOpQ took: %@s", @(opQDuration));
// pause the main thread
dispatch_async(dispatch_get_main_queue(), ^{
[cond lock];
[cond signal];
[cond wait];
[cond unlock];
});
// wait for the main thread to be paused
[cond lock];
[cond wait];
// Dispatch_async
for (NSUInteger i = 0; i < numOps; ++i)
{
dispatch_group_enter(g);
dispatch_async(dispatch_get_main_queue(), ^{
NSLogAsync(@"dispatch_async main thread task #%@", @(i));
usleep(usleepDuration); // simulate work
dispatch_group_leave(g);
});
}
// unpause the main thread
[cond signal];
[cond unlock];
// mark start
start = [NSDate timeIntervalSinceReferenceDate];
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
end = [NSDate timeIntervalSinceReferenceDate];
NSTimeInterval asyncDuration = end - start;
NSLogAsync(@"dispatch_async took: %@s", @(asyncDuration));
// pause the main thread
dispatch_async(dispatch_get_main_queue(), ^{
[cond lock];
[cond signal];
[cond wait];
[cond unlock];
});
// wait for the main thread to be paused
[cond lock];
[cond wait];
// performSelector:
for (NSUInteger i = 0; i < numOps; ++i)
{
dispatch_group_enter(g);
[self performSelectorOnMainThread: @selector(selectorToPerfTask:) withObject: @(i) waitUntilDone: NO];
}
// unpause the main thread
[cond signal];
[cond unlock];
// mark start
start = [NSDate timeIntervalSinceReferenceDate];
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
end = [NSDate timeIntervalSinceReferenceDate];
NSTimeInterval performDuration = end - start;
NSLogAsync(@"performSelector took: %@s", @(performDuration));
// Done.
dispatch_async(dispatch_get_main_queue(), ^{
CFRunLoopRemoveObserver(CFRunLoopGetCurrent(), rlo, kCFRunLoopCommonModes);
NSLogAsync(@"Done. NSOperationQueue: %@s dispatch_async: %@s performSelector: %@", @(opQDuration), @(asyncDuration), @(performDuration));
});
});
}
- (void)selectorToPerfTask: (NSNumber*)task
{
NSLogAsync(@"performSelector task #%@", task);
usleep(usleepDuration); // simulate work
dispatch_group_leave(g);
}
static NSString* NSStringFromCFRunLoopActivity(CFRunLoopActivity activity)
{
NSString* foo = nil;
switch (activity) {
case kCFRunLoopEntry:
foo = @"kCFRunLoopEntry";
break;
case kCFRunLoopBeforeTimers:
foo = @"kCFRunLoopBeforeTimers";
break;
case kCFRunLoopBeforeSources:
foo = @"kCFRunLoopBeforeSources";
break;
case kCFRunLoopBeforeWaiting:
foo = @"kCFRunLoopBeforeWaiting";
break;
case kCFRunLoopAfterWaiting:
foo = @"kCFRunLoopAfterWaiting";
break;
case kCFRunLoopExit:
foo = @"kCFRunLoopExit";
break;
default:
foo = @"ERROR";
break;
}
return foo;
}
static void MyCFRunLoopObserverCallBack(CFRunLoopObserverRef observer, CFRunLoopActivity activity, void *info)
{
NSLogAsync(@"RLO: %@", NSStringFromCFRunLoopActivity(activity));
}
@end
在此代码的输出中,我们看到以下内容(删除了不相关/重复的部分):
RLO: kCFRunLoopEntry
RLO: kCFRunLoopBeforeTimers
RLO: kCFRunLoopBeforeSources
RLO: kCFRunLoopBeforeWaiting
RLO: kCFRunLoopAfterWaiting
NSOpQ task #0
RLO: kCFRunLoopExit
RLO: kCFRunLoopEntry
RLO: kCFRunLoopBeforeTimers
RLO: kCFRunLoopBeforeSources
RLO: kCFRunLoopBeforeWaiting
RLO: kCFRunLoopAfterWaiting
NSOpQ task #1
RLO: kCFRunLoopExit
... pattern repeats ...
RLO: kCFRunLoopEntry
RLO: kCFRunLoopBeforeTimers
RLO: kCFRunLoopBeforeSources
RLO: kCFRunLoopBeforeWaiting
RLO: kCFRunLoopAfterWaiting
NSOpQ task #999
RLO: kCFRunLoopExit
NSOpQ took: 1.237247049808502s
RLO: kCFRunLoopEntry
RLO: kCFRunLoopBeforeTimers
RLO: kCFRunLoopBeforeSources
RLO: kCFRunLoopBeforeWaiting
RLO: kCFRunLoopAfterWaiting
dispatch_async main thread task #0
dispatch_async main thread task #1
... pattern repeats ...
dispatch_async main thread task #999
dispatch_async took: 1.118762016296387s
RLO: kCFRunLoopExit
RLO: kCFRunLoopEntry
RLO: kCFRunLoopBeforeTimers
RLO: kCFRunLoopBeforeSources
performSelector task #0
performSelector task #1
... pattern repeats ...
performSelector task #999
performSelector took: 1.133482992649078s
RLO: kCFRunLoopExit
RLO: kCFRunLoopEntry
RLO: kCFRunLoopBeforeTimers
RLO: kCFRunLoopBeforeSources
Done. NSOperationQueue: 1.237247049808502s dispatch_async: 1.118762016296387s performSelector: 1.133482992649078
这向我们展示的是,NSOperation
在主队列中排队的 s 每次运行循环都会执行一次。(顺便说一句,这将允许为每个操作绘制视图,因此,如果您像 OP 一样更新这些任务中的 UI 控件,这将允许它们绘制。)所有入队dispatch_async(dispatch_get_main_queue(),...)
的-[performSelectorOnMainThread:...]
块/选择器都称为一个在另一个没有让视图绘制或类似的东西之后。(如果在入队任务时没有强制暂停主运行循环,有时会在入队过程中看到运行循环旋转一两次。)
最后,结果与我预期的差不多:
- NSOperationQueue:1.2372s
- dispatch_async:1.1188s
- 执行选择器:1.1335s
NSOperationQueue
总是会更慢,因为旋转运行循环不是免费的。在这个测试工具中,运行循环甚至没有做任何实质性的事情,它已经比dispatch_async
. 如果它正在做任何实质性的事情,比如重绘一个视图,它会慢得多。至于dispatch_async
vsperformSelectorOnMainThread:
都在运行循环的一次旋转中执行所有排队的项目,因此差异非常小。我希望这取决于消息发送开销和管理目标的保留/释放和performSelector...
.
因此,与问题的含义相反NSOperationQueue
,客观上不是三种机制中最快的,而是最慢的。我的怀疑是,在 OP 的情况下,它NSOperationQueue
看起来更快,因为它的“第一次可见更改的时间”会更短,而 fordispatch_async
和performSelector
所有排队的操作都将被执行,只有这样视图才会重绘并显示新状态. 在病态的情况下,我希望这意味着只看到最后一帧,尽管如果你在排队时不阻塞主线程,你可能会得到一些可见的帧(但你实际上会丢弃大部分地面上的框架。)
无论哪种异步执行机制客观上最快,它们都是非常糟糕的动画制作方式。