我在 Python 2.7(在 Window OS 64bit 上)中编写了一个函数,以便从参考多边形(Ref)和一个或多个 ESRI shapefile 格式的分段(Seg)多边形计算相交区域的平均值。代码非常慢,因为我有超过 2000 个参考多边形,并且对于每个 Ref_polygon,该函数每次都针对所有 Seg 多边形(超过 7000 个)运行。很抱歉,该函数是原型。
我想知道多处理是否可以帮助我提高循环速度或者有更多的性能解决方案。如果多处理可以成为可能的解决方案,我想知道优化以下功能的最佳方法
import numpy as np
import ogr
import osr,gdal
from shapely.geometry import Polygon
from shapely.geometry import Point
import osgeo.gdal
import osgeo.gdal as gdal
def AreaInter(reference,segmented,outFile):
# open shapefile
ref = osgeo.ogr.Open(reference)
if ref is None:
raise SystemExit('Unable to open %s' % reference)
seg = osgeo.ogr.Open(segmented)
if seg is None:
raise SystemExit('Unable to open %s' % segmented)
ref_layer = ref.GetLayer()
seg_layer = seg.GetLayer()
# create outfile
if not os.path.split(outFile)[0]:
file_path, file_name_ext = os.path.split(os.path.abspath(reference))
outFile_filename = os.path.splitext(os.path.basename(outFile))[0]
file_out = open(os.path.abspath("{0}\\{1}.txt".format(file_path, outFile_filename)), "w")
else:
file_path_name, file_ext = os.path.splitext(outFile)
file_out = open(os.path.abspath("{0}.txt".format(file_path_name)), "w")
# For each reference objects-i
for index in xrange(ref_layer.GetFeatureCount()):
ref_feature = ref_layer.GetFeature(index)
# get FID (=Feature ID)
FID = str(ref_feature.GetFID())
ref_geometry = ref_feature.GetGeometryRef()
pts = ref_geometry.GetGeometryRef(0)
points = []
for p in xrange(pts.GetPointCount()):
points.append((pts.GetX(p), pts.GetY(p)))
# convert in a shapely polygon
ref_polygon = Polygon(points)
# get the area
ref_Area = ref_polygon.area
# create an empty list
Area_seg, Area_intersect = ([] for _ in range(2))
# For each segmented objects-j
for segment in xrange(seg_layer.GetFeatureCount()):
seg_feature = seg_layer.GetFeature(segment)
seg_geometry = seg_feature.GetGeometryRef()
pts = seg_geometry.GetGeometryRef(0)
points = []
for p in xrange(pts.GetPointCount()):
points.append((pts.GetX(p), pts.GetY(p)))
seg_polygon = Polygon(points)
seg_Area.append = seg_polygon.area
# intersection (overlap) of reference object with the segmented object
intersect_polygon = ref_polygon.intersection(seg_polygon)
# area of intersection (= 0, No intersection)
intersect_Area.append = intersect_polygon.area
# Avarage for all segmented objects (because 1 or more segmented polygons can intersect with reference polygon)
seg_Area_average = numpy.average(seg_Area)
intersect_Area_average = numpy.average(intersect_Area)
file_out.write(" ".join(["%s" %i for i in [FID, ref_Area,seg_Area_average,intersect_Area_average]])+ "\n")
file_out.close()