45

有问题的问题/漫画:http: //xkcd.com/287/

通用解决方案为您提供 50% 的小费

我不确定这是不是最好的方法,但这是我迄今为止提出的。我正在使用 CFML,但任何人都应该可以阅读它。

<cffunction name="testCombo" returntype="boolean">
    <cfargument name="currentCombo" type="string" required="true" />
    <cfargument name="currentTotal" type="numeric" required="true" />
    <cfargument name="apps" type="array" required="true" />

    <cfset var a = 0 />
    <cfset var found = false />

    <cfloop from="1" to="#arrayLen(arguments.apps)#" index="a">
        <cfset arguments.currentCombo = listAppend(arguments.currentCombo, arguments.apps[a].name) />
        <cfset arguments.currentTotal = arguments.currentTotal + arguments.apps[a].cost />
        <cfif arguments.currentTotal eq 15.05>
            <!--- print current combo --->
            <cfoutput><strong>#arguments.currentCombo# = 15.05</strong></cfoutput><br />
            <cfreturn true />
        <cfelseif arguments.currentTotal gt 15.05>
            <cfoutput>#arguments.currentCombo# > 15.05 (aborting)</cfoutput><br />
            <cfreturn false />
        <cfelse>
            <!--- less than 15.05 --->
            <cfoutput>#arguments.currentCombo# < 15.05 (traversing)</cfoutput><br />
            <cfset found = testCombo(arguments.currentCombo, arguments.currentTotal, arguments.apps) />
        </cfif>
    </cfloop>
</cffunction>

<cfset mf = {name="Mixed Fruit", cost=2.15} />
<cfset ff = {name="French Fries", cost=2.75} />
<cfset ss = {name="side salad", cost=3.35} />
<cfset hw = {name="hot wings", cost=3.55} />
<cfset ms = {name="moz sticks", cost=4.20} />
<cfset sp = {name="sampler plate", cost=5.80} />
<cfset apps = [ mf, ff, ss, hw, ms, sp ] />

<cfloop from="1" to="6" index="b">
    <cfoutput>#testCombo(apps[b].name, apps[b].cost, apps)#</cfoutput>
</cfloop>

上面的代码告诉我,加起来 15.05 美元的唯一组合是 7 个混合水果订单,我的 testCombo 函数需要执行 232 次才能完成。

有没有更好的算法来得出正确的解决方案?我找到了正确的解决方案吗?

4

15 回答 15

30

它提供了解决方案的所有排列,但我认为我在代码大小方面击败了其他所有人。

item(X) :- member(X,[215, 275, 335, 355, 420, 580]).
solution([X|Y], Z) :- item(X), plus(S, X, Z), Z >= 0, solution(Y, S).
solution([], 0).

使用 swiprolog 的解决方案:

?- solution(X, 1505).

X = [215, 215, 215, 215, 215, 215, 215] ;

X = [215, 355, 355, 580] ;

X = [215, 355, 580, 355] ;

X = [215, 580, 355, 355] ;

X = [355, 215, 355, 580] ;

X = [355, 215, 580, 355] ;

X = [355, 355, 215, 580] ;

X = [355, 355, 580, 215] ;

X = [355, 580, 215, 355] ;

X = [355, 580, 355, 215] ;

X = [580, 215, 355, 355] ;

X = [580, 355, 215, 355] ;

X = [580, 355, 355, 215] ;

No
于 2008-10-23T07:11:45.407 回答
24

NP 完全问题的关键不是它在小数据集上很棘手,而是解决它的工作量以大于多项式的速度增长,即没有 O(n^x) 算法。

如果时间复杂度是 O(n!),就像(我相信)上面提到的两个问题,那就是 NP。

于 2008-09-27T09:17:03.923 回答
10

递归(在 Perl 中)不是更优雅吗?

#!/usr/bin/perl
use strict;
use warnings;

my @weights  = (2.15, 2.75, 3.35, 3.55, 4.20, 5.80);

my $total = 0;
my @order = ();

iterate($total, @order);

sub iterate
{
    my ($total, @order) = @_;
    foreach my $w (@weights)
    {
        if ($total+$w == 15.05)
        {
            print join (', ', (@order, $w)), "\n";
        }
        if ($total+$w < 15.05)
        {
            iterate($total+$w, (@order, $w));
        }
    }
}

输出

marco@unimatrix-01:~$ ./xkcd-knapsack.pl
2.15, 2.15, 2.15, 2.15, 2.15, 2.15, 2.15
2.15, 3.55, 3.55, 5.8
2.15, 3.55, 5.8, 3.55
2.15, 5.8, 3.55, 3.55
3.55, 2.15, 3.55, 5.8
3.55, 2.15, 5.8, 3.55
3.55, 3.55, 2.15, 5.8
3.55, 5.8, 2.15, 3.55
5.8, 2.15, 3.55, 3.55
5.8, 3.55, 2.15, 3.55

于 2008-09-27T08:50:20.087 回答
7

尽管背包是 NP Complete 的,但它是一个非常特殊的问题:通常的动态程序实际上非常出色(http://en.wikipedia.org/wiki/Knapsack_problem

如果你做正确的分析,结果是 O(nW),n 是项目数,W 是目标数。问题是当你必须 DP 超过一个大的 W 时,这就是我们得到 NP 行为的时候。但在大多数情况下,背包的表现相当不错,您可以毫无问题地解决非常大的实例。就 NP 完全问题而言,背包是最简单的问题之一。

于 2008-10-23T04:18:54.960 回答
4

这是使用 constraint.py 的解决方案

>>> from constraint import *
>>> problem = Problem()
>>> menu = {'mixed-fruit': 2.15,
...  'french-fries': 2.75,
...  'side-salad': 3.35,
...  'hot-wings': 3.55,
...  'mozarella-sticks': 4.20,
...  'sampler-plate': 5.80}
>>> for appetizer in menu:
...    problem.addVariable( appetizer, [ menu[appetizer] * i for i in range( 8 )] )
>>> problem.addConstraint(ExactSumConstraint(15.05))
>>> problem.getSolutions()
[{'side-salad': 0.0, 'french-fries': 0.0, 'sampler-plate': 5.7999999999999998, 'mixed-fruit': 2.1499999999999999, 'mozarella-sticks': 0.0, 'hot-wings': 7.0999999999999996},
 {'side-salad': 0.0, 'french-fries': 0.0, 'sampler-plate': 0.0, 'mixed-fruit':     15.049999999999999, 'mozarella-sticks': 0.0, 'hot-wings': 0.0}]

所以解决方案是订购一个采样盘、一个混合水果和 2 个热翅,或者订购 7 个混合水果。

于 2008-12-24T02:10:12.037 回答
3

这是 F# 的解决方案:

#light

type Appetizer = { name : string; cost : int }

let menu = [
    {name="fruit"; cost=215}
    {name="fries"; cost=275}
    {name="salad"; cost=335}
    {name="wings"; cost=355}
    {name="moz sticks"; cost=420}
    {name="sampler"; cost=580}
    ] 

// Choose: list<Appetizer> -> list<Appetizer> -> int -> list<list<Appetizer>>
let rec Choose allowedMenu pickedSoFar remainingMoney =
    if remainingMoney = 0 then
        // solved it, return this solution
        [ pickedSoFar ]
    else
        // there's more to spend
        [match allowedMenu with
         | [] -> yield! []  // no more items to choose, no solutions this branch
         | item :: rest -> 
            if item.cost <= remainingMoney then
                // if first allowed is within budget, pick it and recurse
                yield! Choose allowedMenu (item :: pickedSoFar) (remainingMoney - item.cost)
            // regardless, also skip ever picking more of that first item and recurse
            yield! Choose rest pickedSoFar remainingMoney]

let solutions = Choose menu [] 1505

printfn "%d solutions:" solutions.Length 
solutions |> List.iter (fun solution ->
    solution |> List.iter (fun item -> printf "%s, " item.name)
    printfn ""
)

(*
2 solutions:
fruit, fruit, fruit, fruit, fruit, fruit, fruit,
sampler, wings, wings, fruit,
*)
于 2008-09-27T08:09:14.773 回答
2

阅读背包问题

于 2008-09-26T20:44:11.237 回答
2

你现在已经得到了所有正确的组合,但你仍然检查了比你需要的更多的东西(正如你的结果显示的许多排列所证明的那样)。此外,您忽略了最后一个达到 15.05 标记的项目。

我有一个 PHP 版本,它执行 209 次递归调用迭代(如果我得到所有排列,它会执行 2012 年)。如果在循环结束之前取出刚刚检查的项目,则可以减少计数。

我不知道 CF 语法,但它会是这样的:

        <cfelse>
            <!--- less than 15.50 --->
            <!--<cfoutput>#arguments.currentCombo# < 15.05 (traversing)</cfoutput><br />-->
            <cfset found = testCombo(CC, CT, arguments.apps) />
        ------- remove the item from the apps array that was just checked here ------
    </cfif>
</cfloop>

编辑:作为参考,这是我的 PHP 版本:

<?
  function rc($total, $string, $m) {
    global $c;

    $m2 = $m;
    $c++;

    foreach($m as $i=>$p) {
      if ($total-$p == 0) {
        print "$string $i\n";
        return;
      }
      if ($total-$p > 0) {
        rc($total-$p, $string . " " . $i, $m2);
      }
      unset($m2[$i]);
    }
  }

  $c = 0;

  $m = array("mf"=>215, "ff"=>275, "ss"=>335, "hw"=>355, "ms"=>420, "sp"=>580);
  rc(1505, "", $m);
  print $c;
?>

输出

 mf mf mf mf mf mf mf
 mf hw hw sp
209

编辑2:

由于解释为什么您可以删除这些元素需要的时间比我在评论中所能容纳的要多一些,所以我在这里添加它。

基本上,每个递归都将找到包括当前搜索元素的所有组合(例如,第一步将找到包括至少一个混合水果在内的所有组合)。理解它的最简单方法是跟踪执行,但由于这会占用大量空间,所以我会按照目标是 6.45 来执行。

MF (2.15)
  MF (4.30)
    MF (6.45) *
    FF (7.05) X
    SS (7.65) X
    ...
  [MF removed for depth 2]
  FF (4.90)
    [checking MF now would be redundant since we checked MF/MF/FF previously]
    FF (7.65) X
    ...
  [FF removed for depth 2]
  SS (5.50)
  ...
[MF removed for depth 1]

此时,我们已经检查了包含任何混合水果的每个组合,因此无需再次检查混合水果。您也可以使用相同的逻辑在每个更深层次的递归中修剪数组。

像这样追踪它实际上可以节省一点时间——知道价格是从低到高排序的,这意味着我们一旦超过目标就不需要继续检查项目。

于 2008-09-26T21:00:15.303 回答
2

我会就算法本身的设计提出一个建议(这就是我解释你最初问题的意图的方式)。这是我写的解决方案的片段:

....

private void findAndReportSolutions(
    int target,  // goal to be achieved
    int balance, // amount of goal remaining
    int index    // menu item to try next
) {
    ++calls;
    if (balance == 0) {
        reportSolution(target);
        return; // no addition to perfect order is possible
    }
    if (index == items.length) {
        ++falls;
        return; // ran out of menu items without finding solution
    }
    final int price = items[index].price;
    if (balance < price) {
        return; // all remaining items cost too much
    }
    int maxCount = balance / price; // max uses for this item
    for (int n = maxCount; 0 <= n; --n) { // loop for this item, recur for others
        ++loops;
        counts[index] = n;
        findAndReportSolutions(
            target, balance - n * price, index + 1
        );
    }
}

public void reportSolutionsFor(int target) {
    counts = new int[items.length];
    calls = loops = falls = 0;
    findAndReportSolutions(target, target, 0);
    ps.printf("%d calls, %d loops, %d falls%n", calls, loops, falls);
}

public static void main(String[] args) {
    MenuItem[] items = {
        new MenuItem("mixed fruit",       215),
        new MenuItem("french fries",      275),
        new MenuItem("side salad",        335),
        new MenuItem("hot wings",         355),
        new MenuItem("mozzarella sticks", 420),
        new MenuItem("sampler plate",     580),
    };
    Solver solver = new Solver(items);
    solver.reportSolutionsFor(1505);
}

...

(请注意,构造函数确实通过增加价格对菜单项进行排序,以在剩余余额小于任何剩余菜单项时启用恒定时间提前终止。)

示例运行的输出是:

7 mixed fruit (1505) = 1505
1 mixed fruit (215) + 2 hot wings (710) + 1 sampler plate (580) = 1505
348 calls, 347 loops, 79 falls

我要强调的设计建议是,在上面的代码中,每个嵌套(递归)调用都处理一个由参数findAndReportSolution(...)标识的菜单项的数量。index换句话说,递归嵌套与内联嵌套循环的行为相似。最外层计算第一个菜单项的可能使用,下一个计算第二个菜单项的使用,等等。(当然,递归的使用将代码从对特定数量的菜单项的依赖中解放出来!)

我建议这样可以更容易地设计代码,并且更容易理解每​​个调用在做什么(考虑到特定项目的所有可能用途,将菜单的其余部分委托给从属调用)。它还避免了产生多项目解决方案的所有排列的组合爆炸(如上述输出的第二行,它只出现一次,而不是重复地以不同的项目排序)。

我试图最大化代码的“显而易见性”,而不是试图最小化某些特定方法的调用次数。例如,上面的设计让委托调用确定是否已达到解决方案,而不是在调用点周围进行检查,这会减少调用次数,但会导致代码混乱。

于 2008-12-29T17:00:33.390 回答
1

嗯,你知道什么是奇怪的。解决方案是菜单上第一项中的七个。

既然这显然意味着要在短时间内用纸和铅笔来解决,为什么不将订单总额除以每件商品的价格,看看他们是否有机会订购了一件商品的倍数呢?

例如,

15.05/2.15 = 7 个混合水果 15.05/2.75 = 5.5 个炸薯条。

然后继续简单的组合......

15 / (2.15 + 2.75) = 3.06122449 混合水果和炸薯条。

换句话说,假设该解决方案应该是简单的并且可以由人类解决,而无需访问计算机。然后测试最简单、最明显(因此隐藏在视线中)的解决方案是否有效。

我发誓这个周末我在俱乐部关门后的凌晨 4:30 点了价值 4.77 美元的开胃菜(含税)时,我会在当地的康尼餐厅吃这个。

于 2009-03-30T21:40:41.080 回答
1

在蟒蛇。
我对“全局变量”有一些问题,所以我把函数作为对象的方法。它是递归的,它为漫画中的问题调用了 29 次,在第一次成功匹配时停止

class Solver(object):
    def __init__(self):
        self.solved = False
        self.total = 0
    def solve(s, p, pl, curList = []):
        poss = [i for i in sorted(pl, reverse = True) if i <= p]
        if len(poss) == 0 or s.solved:
            s.total += 1
            return curList
        if abs(poss[0]-p) < 0.00001:
            s.solved = True # Solved it!!!
            s.total += 1
            return curList + [poss[0]]
        ml,md = [], 10**8
        for j in [s.solve(p-i, pl, [i]) for i in poss]:
            if abs(sum(j)-p)<md: ml,md = j, abs(sum(j)-p)
        s.total += 1
        return ml + curList


priceList = [5.8, 4.2, 3.55, 3.35, 2.75, 2.15]
appetizers = ['Sampler Plate', 'Mozzarella Sticks', \
              'Hot wings', 'Side salad', 'French Fries', 'Mixed Fruit']

menu = zip(priceList, appetizers)

sol = Solver()
q = sol.solve(15.05, priceList)
print 'Total time it runned: ', sol.total
print '-'*30
order = [(m, q.count(m[0])) for m in menu if m[0] in q]
for o in order:
    print '%d x %s \t\t\t (%.2f)' % (o[1],o[0][1],o[0][0])

print '-'*30
ts = 'Total: %.2f' % sum(q)
print ' '*(30-len(ts)-1),ts

输出:

Total time it runned:  29
------------------------------
1 x Sampler Plate   (5.80)
2 x Hot wings       (3.55)
1 x Mixed Fruit       (2.15)
------------------------------
               Total: 15.05
于 2009-06-06T14:51:54.257 回答
0

实际上,我已经重构了我的算法。我遗漏了几个正确的组合,这是因为我在成本超过 15.05 时立即返回 - 我没有费心检查我可以添加的其他(更便宜的)项目。这是我的新算法:

<cffunction name="testCombo" returntype="numeric">
    <cfargument name="currentCombo" type="string" required="true" />
    <cfargument name="currentTotal" type="numeric" required="true" />
    <cfargument name="apps" type="array" required="true" />

    <cfset var a = 0 />
    <cfset var found = false /> 
    <cfset var CC = "" />
    <cfset var CT = 0 />

    <cfset tries = tries + 1 />

    <cfloop from="1" to="#arrayLen(arguments.apps)#" index="a">
        <cfset combos = combos + 1 />
        <cfset CC = listAppend(arguments.currentCombo, arguments.apps[a].name) />
        <cfset CT = arguments.currentTotal + arguments.apps[a].cost />
        <cfif CT eq 15.05>
            <!--- print current combo --->
            <cfoutput><strong>#CC# = 15.05</strong></cfoutput><br />
            <cfreturn true />
        <cfelseif CT gt 15.05>
            <!--<cfoutput>#arguments.currentCombo# > 15.05 (aborting)</cfoutput><br />-->
        <cfelse>
            <!--- less than 15.50 --->
            <!--<cfoutput>#arguments.currentCombo# < 15.05 (traversing)</cfoutput><br />-->
            <cfset found = testCombo(CC, CT, arguments.apps) />
        </cfif>
    </cfloop>
    <cfreturn found />
</cffunction>

<cfset mf = {name="Mixed Fruit", cost=2.15} />
<cfset ff = {name="French Fries", cost=2.75} />
<cfset ss = {name="side salad", cost=3.35} />
<cfset hw = {name="hot wings", cost=3.55} />
<cfset ms = {name="moz sticks", cost=4.20} />
<cfset sp = {name="sampler plate", cost=5.80} />
<cfset apps = [ mf, ff, ss, hw, ms, sp ] />

<cfset tries = 0 />
<cfset combos = 0 />

<cfoutput>
    <cfloop from="1" to="6" index="b">
        #testCombo(apps[b].name, apps[b].cost, apps)#
    </cfloop>
    <br />
    tries: #tries#<br />
    combos: #combos#
</cfoutput>

输出:

Mixed Fruit,Mixed Fruit,Mixed Fruit,Mixed Fruit,Mixed Fruit,Mixed Fruit,Mixed Fruit = 15.05
Mixed Fruit,hot wings,hot wings,sampler plate = 15.05
Mixed Fruit,hot wings,sampler plate,hot wings = 15.05
Mixed Fruit,sampler plate,hot wings,hot wings = 15.05
false false false hot wings,Mixed Fruit,hot wings,sampler plate = 15.05
hot wings,Mixed Fruit,sampler plate,hot wings = 15.05
hot wings,hot wings,Mixed Fruit,sampler plate = 15.05
hot wings,sampler plate,Mixed Fruit,hot wings = 15.05
false false sampler plate,Mixed Fruit,hot wings,hot wings = 15.05
sampler plate,hot wings,Mixed Fruit,hot wings = 15.05
false
tries: 2014
combos: 12067

我认为这可能有所有正确的组合,但我的问题仍然存在:有更好的算法吗?

于 2008-09-26T20:52:48.237 回答
0

@rcar 的答案中学习,以及稍后的另一个重构,我得到了以下内容。

与我编写的许多东西一样,我已经从 CFML 重构为 CFScript,但代码基本相同。

我在他的建议中添加了数组中动态起点的建议(而不是按值传递数组并更改其值以供将来递归使用),这使我得到了与他相同的统计数据(209 次递归,571 次组合价格检查(循环迭代) )),然后通过假设数组将按成本排序——因为它是——并在我们超过目标价格时立即中断,从而对此进行了改进。中断后,我们减少到 209 次递归和 376 次循环迭代。

该算法还有哪些其他改进?

function testCombo(minIndex, currentCombo, currentTotal){
    var a = 0;
    var CC = "";
    var CT = 0;
    var found = false;

    tries += 1;
    for (a=arguments.minIndex; a <= arrayLen(apps); a++){
        combos += 1;
        CC = listAppend(arguments.currentCombo, apps[a].name);
        CT = arguments.currentTotal + apps[a].cost;
        if (CT eq 15.05){
            //print current combo
            WriteOutput("<strong>#CC# = 15.05</strong><br />");
            return(true);
        }else if (CT gt 15.05){
            //since we know the array is sorted by cost (asc),
            //and we've already gone over the price limit,
            //we can ignore anything else in the array
            break; 
        }else{
            //less than 15.50, try adding something else
            found = testCombo(a, CC, CT);
        }
    }
    return(found);
}

mf = {name="mixed fruit", cost=2.15};
ff = {name="french fries", cost=2.75};
ss = {name="side salad", cost=3.35};
hw = {name="hot wings", cost=3.55};
ms = {name="mozarella sticks", cost=4.20};
sp = {name="sampler plate", cost=5.80};
apps = [ mf, ff, ss, hw, ms, sp ];

tries = 0;
combos = 0;

testCombo(1, "", 0);

WriteOutput("<br />tries: #tries#<br />combos: #combos#");
于 2008-10-03T17:45:41.530 回答
0

这是 Clojure 中的并发实现。计算(items-with-price 15.05)大约需要 14 次组合生成递归,以及大约 10 次可能性检查。我花了大约 6 分钟来计算(items-with-price 100)我的 Intel Q9300。

这只会给出第一个找到的答案,或者nil如果没有,因为这就是问题所需要的。为什么要做更多你被告知要做的工作;)?

;; np-complete.clj
;; A Clojure solution to XKCD #287 "NP-Complete"
;; By Sam Fredrickson
;;
;; The function "items-with-price" returns a sequence of items whose sum price
;; is equal to the given price, or nil.

(defstruct item :name :price)

(def *items* #{(struct item "Mixed Fruit" 2.15)
               (struct item "French Fries" 2.75)
               (struct item "Side Salad" 3.35)
               (struct item "Hot Wings" 3.55)
               (struct item "Mozzarella Sticks" 4.20)
               (struct item "Sampler Plate" 5.80)})

(defn items-with-price [price]
  (let [check-count (atom 0)
        recur-count (atom 0)
        result  (atom nil)
        checker (agent nil)
        ; gets the total price of a seq of items.
        items-price (fn [items] (apply + (map #(:price %) items)))
        ; checks if the price of the seq of items matches the sought price.
        ; if so, it changes the result atom. if the result atom is already
        ; non-nil, nothing is done.
        check-items (fn [unused items]
                      (swap! check-count inc)
                      (if (and (nil? @result)
                               (= (items-price items) price))
                        (reset! result items)))
        ; lazily generates a list of combinations of the given seq s.
        ; haven't tested well...
        combinations (fn combinations [cur s]
                       (swap! recur-count inc)
                       (if (or (empty? s)
                               (> (items-price cur) price))
                         '()
                         (cons cur
                          (lazy-cat (combinations (cons (first s) cur) s)
                                    (combinations (cons (first s) cur) (rest s))
                                    (combinations cur (rest s))))))]
    ; loops through the combinations of items, checking each one in a thread
    ; pool until there are no more combinations or the result atom is non-nil.
    (loop [items-comb (combinations '() (seq *items*))]
      (if (and (nil? @result)
               (not-empty items-comb))
        (do (send checker check-items (first items-comb))
            (recur (rest items-comb)))))
    (await checker)
    (println "No. of recursions:" @recur-count)
    (println "No. of checks:" @check-count)
    @result))
于 2009-06-01T20:55:28.910 回答
0

如果您想要优化算法,最好按降序尝试价格。这样您就可以先用完剩余的金额,然后看看如何填写剩余的金额。

此外,您可以使用数学计算每次开始的每种食品的最大数量,这样您就不会尝试超过 15.05 美元目标的组合。

这个算法只需要尝试 88 种组合就可以得到完整的答案,这看起来是迄今为止发布的最低值:

public class NPComplete {
    private static final int[] FOOD = { 580, 420, 355, 335, 275, 215 };
    private static int tries;

    public static void main(String[] ignore) {
        tries = 0;
        addFood(1505, "", 0);
        System.out.println("Combinations tried: " + tries);
    }

    private static void addFood(int goal, String result, int index) {
        // If no more food to add, see if this is a solution
        if (index >= FOOD.length) {
            tries++;
            if (goal == 0)
                System.out.println(tries + " tries: " + result.substring(3));
            return;
        }

        // Try all possible quantities of this food
        // If this is the last food item, only try the max quantity
        int qty = goal / FOOD[index];
        do {
            addFood(goal - qty * FOOD[index],
                    result + " + " + qty + " * " + FOOD[index], index + 1);
        } while (index < FOOD.length - 1 && --qty >= 0);
    }
}

这是显示两种解决方案的输出:

9 次尝试:1 * 580 + 0 * 420 + 2 * 355 + 0 * 335 + 0 * 275 + 1 * 215
88 次尝试:0 * 580 + 0 * 420 + 0 * 355 + 0 * 335 + 0 * 275 + 7 * 215
尝试的组合:88
于 2010-01-07T19:06:20.430 回答