索引/切片似乎比@NPE 使用的正则表达式更快:
In [47]: def with_indexing(dstr):
....: return datetime.datetime(*map(int, [dstr[:4], dstr[5:7], dstr[8:10],
....: dstr[11:13], dstr[14:16], dstr[17:]]))
In [48]: p = re.compile('[-T:]')
In [49]: def with_regex(dt_str):
....: return datetime.datetime(*map(int, p.split(dt_str)))
In [50]: %timeit with_regex(dstr)
100000 loops, best of 3: 3.84 us per loop
In [51]: %timeit with_indexing(dstr)
100000 loops, best of 3: 2.98 us per loop
我认为如果您使用文件解析器numpy.genfromtxt
,converters
参数和快速字符串解析方法,您可以在不到半秒的时间内读取和解析整个文件。
我使用以下函数创建了一个包含大约 25000 行、ISO 日期字符串作为索引和 10 个数据列的示例文件:
import numpy as np
import pandas as pd
def create_data():
# create dates
dates = pd.date_range('2010-01-01T00:30', '2013-01-04T23:30', freq='H')
# convert to iso
iso_dates = dates.map(lambda x: x.strftime('%Y-%m-%dT%H:%M:%S'))
# create data
data = pd.DataFrame(np.random.random((iso_dates.size, 10)) * 100,
index=iso_dates)
# write to file
data.to_csv('dates.csv', header=False)
比我使用以下代码来解析文件:
In [54]: %timeit a = np.genfromtxt('dates.csv', delimiter=',',
converters={0:with_regex})
1 loops, best of 3: 430 ms per loop
In [55]: %timeit a = np.genfromtxt('dates.csv', delimiter=',',
converters={0:with_indexing})
1 loops, best of 3: 391 ms per loop
pandas(基于 numpy)有一个基于 C 的文件解析器,它甚至更快:
In [56]: %timeit df = pd.read_csv('dates.csv', header=None, index_col=0,
parse_dates=True, date_parser=with_indexing)
10 loops, best of 3: 167 ms per loop