推理实际上也列在问题中提供的示例链接中(最后几行)。
对于任何对保存/加载训练模型然后使用它来推断新文档的模型分布的整个代码感兴趣的人 - 这里有一些片段:
完成后model.estimate()
,您就拥有了经过实际训练的模型,因此您可以使用标准 Java 对其进行序列化ObjectOutputStream
(因为ParallelTopicModel
implements Serializable
):
try {
FileOutputStream outFile = new FileOutputStream("model.ser");
ObjectOutputStream oos = new ObjectOutputStream(outFile);
oos.writeObject(model);
oos.close();
} catch (FileNotFoundException ex) {
// handle this error
} catch (IOException ex) {
// handle this error
}
但是请注意,当您推断时,您还需要Instance
通过相同的管道传递新句子(as)以便对其进行预处理(tokenzie 等)因此,您还需要保存管道列表(因为我们正在使用SerialPipe
什么时候可以创建一个实例然后序列化它):
// initialize the pipelist (using in model training)
SerialPipes pipes = new SerialPipes(pipeList);
try {
FileOutputStream outFile = new FileOutputStream("pipes.ser");
ObjectOutputStream oos = new ObjectOutputStream(outFile);
oos.writeObject(pipes);
oos.close();
} catch (FileNotFoundException ex) {
// handle error
} catch (IOException ex) {
// handle error
}
为了加载模型/管道并将它们用于推理,我们需要反序列化:
private static void InferByModel(String sentence) {
// define model and pipeline
ParallelTopicModel model = null;
SerialPipes pipes = null;
// load the model
try {
FileInputStream outFile = new FileInputStream("model.ser");
ObjectInputStream oos = new ObjectInputStream(outFile);
model = (ParallelTopicModel) oos.readObject();
} catch (IOException ex) {
System.out.println("Could not read model from file: " + ex);
} catch (ClassNotFoundException ex) {
System.out.println("Could not load the model: " + ex);
}
// load the pipeline
try {
FileInputStream outFile = new FileInputStream("pipes.ser");
ObjectInputStream oos = new ObjectInputStream(outFile);
pipes = (SerialPipes) oos.readObject();
} catch (IOException ex) {
System.out.println("Could not read pipes from file: " + ex);
} catch (ClassNotFoundException ex) {
System.out.println("Could not load the pipes: " + ex);
}
// if both are properly loaded
if (model != null && pipes != null){
// Create a new instance named "test instance" with empty target
// and source fields note we are using the pipes list here
InstanceList testing = new InstanceList(pipes);
testing.addThruPipe(
new Instance(sentence, null, "test instance", null));
// here we get an inferencer from our loaded model and use it
TopicInferencer inferencer = model.getInferencer();
double[] testProbabilities = inferencer
.getSampledDistribution(testing.get(0), 10, 1, 5);
System.out.println("0\t" + testProbabilities[0]);
}
}
出于某种原因,我没有得到与原始模型完全相同的推断 - 但这是另一个问题的问题(如果有人知道,我很乐意听到)