在这些对话之后:
我想测试一个更“真实”的案例研究。我最近不得不将 SAS 代码迁移到 R 并将 kdb 代码迁移到 R 代码。我试图编译一个足够简单但更复杂的例子来优化。
让我们建立训练集
buildDF <- function(N){
set.seed(123); dateTimes <- sort(as.POSIXct("2001-01-01 08:30:00") + floor(3600*runif(N)));
set.seed(124); f <- floor(1+3*runif(N));
set.seed(123); s <- floor(1+3*runif(N));
return(data.frame(dateTime=dateTimes, f=f, s=s));
}
这是需要达到的
f1 <- function(DF){
#init
N <- nrow(DF);
DF$num[1] = 1;
for(i in 2:N){
if(DF$f[i] == 2){
DF$num[i] <- ifelse(DF$s[i-1] == DF$s[i],DF$num[i-1],1+DF$num[i-1]);
}else{ #meaning f in {1,3}
if(DF$f[i-1] != 2){
DF$num[i] = DF$num[i-1];
}else{
DF$num[i] = ifelse((DF$dateTime[i]-DF$dateTime[i-1])==0,DF$num[i-1],1+DF$num[i-1]);
}
}
}
return(DF)
}
这当然是可怕的。让我们对它进行一点矢量化:
f2 <- function(DF){
N <- nrow(DF);
DF$add <- 1; DF$ds <- c(NA,diff(DF$s)); DF$lf <- c(NA,DF$f[1:(N-1)]);
DF$dt <- c(NA,diff(DF$dateTime));
DF$add[DF$f == 2 & DF$ds == 0] <- 0;
DF$add[DF$f == 2 & DF$ds != 0] <- 1;
DF$add[DF$f != 2 & DF$lf != 2] <- 0;
DF$add[DF$f != 2 & DF$lf == 2 & DF$dt==0] <- 0;
DF$num <- cumsum(DF$add);
return(DF);
}
并使用最有用的data.table:
f3 <- function(DT){
N <- nrow(DT);
DT[,add:=1]; DT[,ds:=c(NA,diff(s))]; DT[,lf:=c(NA,f[1:(N-1)])];
DT[,dt:=c(NA,diff(dateTime))];
DT[f == 2 & ds == 0, add:=0];
DT[f == 2 & ds != 0, add:=1];
DT[f != 2 & lf != 2, add:=0];
DT[f != 2 & lf == 2 & dt == 0, add:=0];
DT[,num:=cumsum(add)];
return(DT);
}
在 10K 数据帧上:
library(rbenchmark);
library(data.table);
N <- 1e4;
DF <- buildDF(N)
DT <- as.data.table(DF);#we can contruct the data.table as a data.frame so it's ok we don't count for this time.
#make sure everybody is equal
DF1 <- f1(DF) ; DF2 <- f2(DF); DT3 <- f3(DT);
identical(DF1$num,DF2$num,DT3$num)
[1] TRUE
#let's benchmark
benchmark(f1(DF),f2(DF),f3(DT),columns=c("test", "replications", "elapsed",
+ "relative", "user.self", "sys.self"), order="relative",replications=1);
test replications elapsed relative user.self sys.self
2 f2(DF) 1 0.010 1.0 0.012 0.000
3 f3(DT) 1 0.012 1.2 0.012 0.000
1 f1(DF) 1 9.085 908.5 8.980 0.072
好的,现在在一个更体面的 5M 行 data.frame
N <- 5e6;
DF <- buildDF(N)
DT <- as.data.table(DF);
benchmark(f2(DF),f3(DT),columns=c("test", "replications", "elapsed",
+ "relative", "user.self", "sys.self"), order="relative",replications=1);
test replications elapsed relative user.self sys.self
2 f3(DT) 1 2.843 1.000 2.092 0.624
1 f2(DF) 1 10.920 3.841 4.016 5.137
我们使用 data.table 获得了 5 倍的收益。
我想知道Rcpp或 zoo:::rollapply 是否可以在这方面获得很多。 我会很高兴有任何建议