我一直想知道使用 bst 汇编指令是否会更快。所以我尝试了 3 次实现,并在 1000 万次迭代中得到了以下结果:
你的实现 (Dr.Kameleon) 1.77 秒
log2() 实现 (icepack) 2.17 秒
我的组装实现(我)0.16秒
输出:
bits version:
Function started at 0
ended at 177
spent 177 (1.770000 seconds)
c version:
Function started at 177
ended at 394
spent 217 (2.170000 seconds)
c version:
Function started at 394
ended at 410
spent 16 (0.160000 seconds)
关于 C/C++ 的一点,静态是可怕的。它实际上是在 CPU 指令列表中编译的(也不是我所期望的!!!)相反,在函数之外的无名命名空间中使用数组。这将产生预期的效果。尽管在汇编中您可以使用 .long (或其他大小)然后 %rip 来引用来自 IP 的数据。
注意:编译后,我看不到我的程序集版本中使用的大小 (n),所以我不太确定返回的数组是否有效。除此之外,代码本身变成了 5 个汇编指令的循环,因此速度有微小的提高(大约 x10)。
log2() 缓慢的原因是它将数字转换为 xmm 寄存器,然后调用另一个函数。然后它将 xmm 寄存器转换回常规寄存器。
#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <unistd.h>
#include <sys/times.h>
#include <string.h>
#include <math.h>
#include <vector>
using namespace std;
namespace
{
const int index64[64] = {
63, 0, 58, 1, 59, 47, 53, 2,
60, 39, 48, 27, 54, 33, 42, 3,
61, 51, 37, 40, 49, 18, 28, 20,
55, 30, 34, 11, 43, 14, 22, 4,
62, 57, 46, 52, 38, 26, 32, 41,
50, 36, 17, 19, 29, 10, 13, 21,
56, 45, 25, 31, 35, 16, 9, 12,
44, 24, 15, 8, 23, 7, 6, 5 };
const uint64_t debruijn64 = 0x07EDD5E59A4E28C2ULL;
}
int firstBit(uint64_t bitboard)
{
return index64[((bitboard & -bitboard) * debruijn64) >> 58];
}
vector<int> bits(uint64_t bitboard)
{
vector<int> res;
res.reserve(64);
while(bitboard)
{
int first = firstBit(bitboard);
res.push_back(first);
bitboard &= ~(1ULL << first);
}
return res;
}
vector<int> bits_c(uint64_t bitboard)
{
int n;
vector<int> res;
res.reserve(64);
for (n = 0; bitboard != 0; n++, bitboard &= (bitboard - 1))
{
res.push_back(log2(bitboard & ~(bitboard - 1)));
}
return res;
}
vector<int> bits_asm(uint64_t bitboard)
{
int64_t n(0);
int res[64];
asm(
"bsf %[b], %%rax\n\t"
"je exit\n\t"
".align 16\n"
"loop:\n\t"
"mov %%eax, (%[r],%[n],4)\n\t"
"btr %%rax, %[b]\n\t"
"inc %[n]\n\t"
"bsf %[b], %%rax\n\t"
"je loop\n"
"exit:\n\t"
: /* output */ "=r" (n)
: /* input */ [n] "r" (n), [r] "r" (res), [b] "r" (bitboard)
: /* state */ "eax", "cc"
);
return vector<int>(res, res + n);
}
class run_timer
{
public:
run_timer()
{
}
void start()
{
times(&f_start);
}
void stop()
{
times(&f_stop);
}
void report(const char *msg)
{
printf("%s:\n"
"Function started at %ld\n"
" ended at %ld\n"
" spent %ld (%f seconds)\n",
msg,
f_start.tms_utime,
f_stop.tms_utime,
f_stop.tms_utime - f_start.tms_utime,
(double)(f_stop.tms_utime - f_start.tms_utime)/(double)sysconf(_SC_CLK_TCK));
}
struct tms f_start;
struct tms f_stop;
};
int main(int argc, char *argv[])
{
run_timer t;
t.start();
for(int i(0); i < 10000000; ++i)
{
bits(rand());
}
t.stop();
t.report("bits version");
t.start();
for(int i(0); i < 10000000; ++i)
{
bits_c(rand());
}
t.stop();
t.report("c version");
t.start();
for(int i(0); i < 10000000; ++i)
{
bits_asm(rand());
}
t.stop();
t.report("c version");
return 0;
}
使用以下命令行使用 g++ 编译:
c++ -msse4.2 -O2 -o bits -c bits.cpp
尽管您可能认为 -msse4.2 可能是 log2() 版本的问题,但我尝试不使用它,然后 log2() 速度较慢。
顺便说一句,我不推荐这种方法,因为它不可移植。只有基于 Intel 的计算机才能理解这些指令。