8

我正在尝试使用 Newton-Raphson 算法R来最小化我为一个非常具体的问题编写的对数似然函数。老实说,估计方法超出了我的想象,但我知道我所在领域(心理测量学)中的许多人使用 NR 算法进行估计,所以我正在尝试使用这种方法,至少一开始是这样。我有一系列嵌套函数,它们返回一个标量作为特定数据向量的对数似然估计:

log.likelihoodSL <- function(x,sxdat1,item) {
  theta <- x[1]
  rho <- x[2]
  log.lik <- 0
  for (it in 1:length(sxdat1)) {
    val <- as.numeric(sxdat1[it])
    apars <- item[it,1:3]
    cpars <- item[it,4:6]
    log.lik <- log.lik + as.numeric(log.pSL(theta,rho,apars,cpars,val))
  }
  return(log.lik)
}

log.pSL <- function(theta,rho,apars,cpars,val) {
  p <- (rho * e.aSL(theta,apars,cpars,val)) + ((1-rho) * e.nrm(theta,apars,cpars,val))
  log.p <- log(p)
  return(log.p)
}

e.aSL <- function(theta,apars,cpars,val) {
  if (val==1) {
    aprob <- e.nrm(theta,apars,cpars,val)
  } else if (val==2) {
    aprob <- 1 - e.nrm(theta,apars,cpars,val)
  } else
    aprob <- 0
  return(aprob)
}

e.nrm <- function(theta,apars,cpars,val) {
  nprob <- exp(apars*theta + cpars)/sum(exp((apars*theta) + cpars))
  nprob <- nprob[val]
  return(nprob)
}

这些函数都按顺序依次调用。调用最高函数如下:

max1 <- maxNR(log.likelihoodSL,grad=NULL,hess=NULL,start=x,print.level=1,sxdat1=sxdat1,item=item)

这是输入数据的示例(sxdat1在这种情况下我称之为):

> sxdat1
 V1  V2  V3  V4  V5  V6  V7  V8  V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 
  2   1   3   1   3   3   2   2   3   2   2   2   2   2   3   2   3   2 
V19 V20 
  2   2 

这是变量item

> item
             V1        V2         V3           V4         V5        V6
 [1,] 0.2494625 0.3785529 -0.6280155 -0.096817808 -0.7549263 0.8517441
 [2,] 0.2023690 0.4582290 -0.6605980 -0.191895013 -0.8391203 1.0310153
 [3,] 0.2044005 0.3019147 -0.5063152 -0.073135691 -0.6061725 0.6793082
 [4,] 0.2233619 0.4371988 -0.6605607 -0.160377714 -0.8233197 0.9836974
 [5,] 0.2257933 0.2851198 -0.5109131 -0.044494872 -0.5970246 0.6415195
 [6,] 0.2047308 0.3438725 -0.5486033 -0.104356236 -0.6693569 0.7737131
 [7,] 0.3402220 0.2724951 -0.6127172  0.050795183 -0.6639092 0.6131140
 [8,] 0.2513672 0.3263046 -0.5776718 -0.056203015 -0.6779823 0.7341853
 [9,] 0.2008285 0.3389165 -0.5397450 -0.103565987 -0.6589961 0.7625621
[10,] 0.2890680 0.2700661 -0.5591341  0.014251386 -0.6219001 0.6076488
[11,] 0.3127214 0.2572715 -0.5699929  0.041587479 -0.6204483 0.5788608
[12,] 0.2697048 0.2965255 -0.5662303 -0.020115553 -0.6470669 0.6671825
[13,] 0.2799978 0.3219374 -0.6019352 -0.031454750 -0.6929045 0.7243592
[14,] 0.2773233 0.2822723 -0.5595956 -0.003711768 -0.6314010 0.6351127
[15,] 0.2433519 0.2632824 -0.5066342 -0.014947878 -0.5774375 0.5923853
[16,] 0.2947281 0.3605812 -0.6553092 -0.049389825 -0.7619178 0.8113076
[17,] 0.2290081 0.3114185 -0.5404266 -0.061807853 -0.6388839 0.7006917
[18,] 0.3824588 0.2543871 -0.6368459  0.096053788 -0.6684247 0.5723709
[19,] 0.2405821 0.3903595 -0.6309416 -0.112333048 -0.7659758 0.8783089
[20,] 0.2424331 0.3028480 -0.5452811 -0.045311136 -0.6360968 0.6814080

我想最小化函数的两个参数log.likelihood()是 theta 和 rho,我想将 theta 限制在 -3 和 3 之间,将 rho 限制在 0 和 1 之间,但我不知道如何使用当前的设置。有人可以帮帮我吗?我是否需要使用与 Newton-Raphson 方法不同的估计方法,或者有没有办法使用我目前正在使用maxNR的包中的函数来实现这一点?maxLik谢谢!

x编辑:包含参数 theta 和 rho 的起始值的向量只是c(0,0)因为这是这些参数的“平均”或“默认”假设(就它们的实质性解释而言)。

4

1 回答 1

8

更方便的数据形式:

sxdat1 <- c(2,1,3,1,3,3,2,2,3,2,2,2,2,2,3,2,3,2,2,2)
item <- matrix(c(
0.2494625,0.3785529,-0.6280155,-0.096817808,-0.7549263,0.8517441,
0.2023690,0.4582290,-0.6605980,-0.191895013,-0.8391203,1.0310153,
0.2044005,0.3019147,-0.5063152,-0.073135691,-0.6061725,0.6793082,
0.2233619,0.4371988,-0.6605607,-0.160377714,-0.8233197,0.9836974,
0.2257933,0.2851198,-0.5109131,-0.044494872,-0.5970246,0.6415195,
0.2047308,0.3438725,-0.5486033,-0.104356236,-0.6693569,0.7737131,
0.3402220,0.2724951,-0.6127172,0.050795183,-0.6639092,0.6131140,
0.2513672,0.3263046,-0.5776718,-0.056203015,-0.6779823,0.7341853,
0.2008285,0.3389165,-0.5397450,-0.103565987,-0.6589961,0.7625621,
0.2890680,0.2700661,-0.5591341,0.014251386,-0.6219001,0.6076488,
0.3127214,0.2572715,-0.5699929,0.041587479,-0.6204483,0.5788608,
0.2697048,0.2965255,-0.5662303,-0.020115553,-0.6470669,0.6671825,
0.2799978,0.3219374,-0.6019352,-0.031454750,-0.6929045,0.7243592,
0.2773233,0.2822723,-0.5595956,-0.003711768,-0.6314010,0.6351127,
0.2433519,0.2632824,-0.5066342,-0.014947878,-0.5774375,0.5923853,
0.2947281,0.3605812,-0.6553092,-0.049389825,-0.7619178,0.8113076,
0.2290081,0.3114185,-0.5404266,-0.061807853,-0.6388839,0.7006917,
0.3824588,0.2543871,-0.6368459,0.096053788,-0.6684247,0.5723709,
0.2405821,0.3903595,-0.6309416,-0.112333048,-0.7659758,0.8783089,
0.2424331,0.3028480,-0.5452811,-0.045311136,-0.6360968,0.6814080),
               byrow=TRUE,ncol=6)

使用maxNR

library(maxLik)
x <- c(0,0)
max1 <- maxNR(log.likelihoodSL,grad=NULL,hess=NULL,start=x,
              print.level=1,sxdat1=sxdat1,item=item)

rho请注意在消极游荡时产生的警告。但是,maxNR可以从中恢复并获得位于可行集内部的估计值 (theta=-1, rho=0.63)。 L-BFGS-B无法处理非有限的临时结果,但边界使算法远离那些有问题的区域。

我选择使用bbmle而不是使用optim:来实现这一点,它bbmle是(和其他优化工具)的包装器,optim它提供了一些特定于似然估计的好特性(分析、置信区间、模型之间的似然比测试等)。

library(bbmle)

## mle2() wants a NEGATIVE log-likelihood
NLL <- function(x,sxdat1,item) {
    -log.likelihoodSL(x,sxdat1,item)
}

编辑:在早期版本中,我曾经control=list(fnscale=-1)告诉优化器我正在传递一个应该最大化而不是最小化的对数似然函数;这得到了正确的答案,但随后使用结果的尝试可能会变得非常混乱,因为包没有考虑这种可能性(例如,报告的对数似然的符号是错误的)。这可以在包中修复,但我不确定它是否值得。

## needed when objective function takes a vector of args rather than
##  separate named arguments:
parnames(NLL) <- c("theta","rho")
(m1 <- mle2(NLL,start=c(theta=0,rho=0.5),method="L-BFGS-B",
     lower=c(theta=-3,rho=2e-3),upper=c(theta=3,rho=1-2e-3),
     data=list(sxdat1=sxdat1,item=item)))

这里有几点:

  • 开始于rho=0.5边界而不是边界
  • rho边界稍微设置在 [0,1] 内(L-BFGS-B在计算导数的有限差分近似时,并不总是完全尊重边界)
  • data在参数中指定输入数据

在这种情况下,我得到与 相同的结果maxNR

 ## Call:
 ## mle2(minuslogl = NLL, start = c(theta = 0, rho = 0.5), 
 ##     method = "L-BFGS-B", data = list(sxdat1 = sxdat1, item = item), 
 ##     lower = c(theta = -3, rho = 0.002), upper = c(theta = 3, 
 ##         rho = 1 - 0.002), control = list(fnscale = -1))
 ## 
 ## Coefficients:
 ##      theta        rho 
 ## -1.0038531  0.6352782 
 ## 
 ## Log-likelihood: -18.11 

除非您非常迫切地需要使用 Newton-Raphson 而不是使用基于梯度的“准牛顿”方法,否则我猜这已经足够好了。(听起来你没有很强的技术理由这样做,除了“这就是我所在领域的其他人所做的” - 一个很好的理由,所有其他事情都是平等的,但在这种情况下不足以让我挖掘当类似的方法很容易获得并且工作正常时,可以实施 NR。)

于 2012-12-29T19:57:24.693 回答