我需要一个组件/类,它可以在 N 秒(或 ms 或 nanos,没关系)内将某些方法的执行限制为最大 M 调用。
换句话说,我需要确保我的方法在 N 秒的滑动窗口中执行不超过 M 次。
如果您不知道现有课程,请随时发布您的解决方案/想法,您将如何实现这一点。
我需要一个组件/类,它可以在 N 秒(或 ms 或 nanos,没关系)内将某些方法的执行限制为最大 M 调用。
换句话说,我需要确保我的方法在 N 秒的滑动窗口中执行不超过 M 次。
如果您不知道现有课程,请随时发布您的解决方案/想法,您将如何实现这一点。
我会使用固定大小为 M 的时间戳环形缓冲区。每次调用该方法时,检查最旧的条目,如果它过去不到 N 秒,则执行并添加另一个条目,否则你会睡觉为时差。
对我来说开箱即用的是 Google Guava RateLimiter。
// Allow one request per second
private RateLimiter throttle = RateLimiter.create(1.0);
private void someMethod() {
throttle.acquire();
// Do something
}
具体而言,您应该能够使用DelayQueue
. M
Delayed
使用延迟初始设置为零的实例初始化队列。当对该方法的请求进入时,take
一个令牌会导致该方法阻塞,直到满足限制要求。当一个令牌被取走时,add
一个新的令牌进入队列,延迟为N
.
阅读令牌桶算法。基本上,您有一个带有令牌的存储桶。每次执行该方法时,都会获取一个令牌。如果没有更多的代币,你会阻塞直到你得到一个。同时,有一些外部参与者以固定的时间间隔补充代币。
我不知道有一个图书馆可以做到这一点(或类似的事情)。您可以将此逻辑写入您的代码或使用 AspectJ 添加行为。
如果您需要一个基于 Java 的可跨分布式系统运行的滑动窗口速率限制器,您可能需要查看https://github.com/mokies/ratelimitj项目。
Redis 支持的配置,将 IP 请求限制为每分钟 50 个,如下所示:
import com.lambdaworks.redis.RedisClient;
import es.moki.ratelimitj.core.LimitRule;
RedisClient client = RedisClient.create("redis://localhost");
Set<LimitRule> rules = Collections.singleton(LimitRule.of(1, TimeUnit.MINUTES, 50)); // 50 request per minute, per key
RedisRateLimit requestRateLimiter = new RedisRateLimit(client, rules);
boolean overLimit = requestRateLimiter.overLimit("ip:127.0.0.2");
有关Redis 配置的更多详细信息,请参阅https://github.com/mokies/ratelimitj/tree/master/ratelimitj-redis 。
这取决于应用程序。
想象一下这样一种情况,多个线程希望令牌执行一些全局限速操作,不允许突发(即,您希望每 10 秒限制 10 个操作,但您不希望在第一秒内发生 10 个操作,然后保持9 秒停止)。
DelayedQueue 有一个缺点:线程请求令牌的顺序可能不是它们完成请求的顺序。如果多个线程被阻塞等待一个令牌,则不清楚哪个线程将获取下一个可用令牌。在我看来,你甚至可以让线程永远等待。
一种解决方案是在两个连续动作之间设置最小时间间隔,并按照请求的顺序执行动作。
这是一个实现:
public class LeakyBucket {
protected float maxRate;
protected long minTime;
//holds time of last action (past or future!)
protected long lastSchedAction = System.currentTimeMillis();
public LeakyBucket(float maxRate) throws Exception {
if(maxRate <= 0.0f) {
throw new Exception("Invalid rate");
}
this.maxRate = maxRate;
this.minTime = (long)(1000.0f / maxRate);
}
public void consume() throws InterruptedException {
long curTime = System.currentTimeMillis();
long timeLeft;
//calculate when can we do the action
synchronized(this) {
timeLeft = lastSchedAction + minTime - curTime;
if(timeLeft > 0) {
lastSchedAction += minTime;
}
else {
lastSchedAction = curTime;
}
}
//If needed, wait for our time
if(timeLeft <= 0) {
return;
}
else {
Thread.sleep(timeLeft);
}
}
}
虽然这不是您所要求的,ThreadPoolExecutor
但它旨在限制 M 个同时请求而不是 N 秒内的 M 个请求,它也可能很有用。
我已经实现了一个简单的节流算法。试试这个链接, http: //krishnaprasadas.blogspot.in/2012/05/throttling-algorithm.html
算法简介,
该算法利用了 Java延迟队列的能力。创建一个具有预期延迟的延迟对象(此处为毫秒TimeUnit 1000/M )。将相同的对象放入延迟队列中,该队列将为我们提供移动窗口。然后在每个方法调用之前从队列中取出对象,take是一个阻塞调用,它只会在指定的延迟后返回,并且在方法调用之后不要忘记将对象放入队列中更新时间(这里是当前毫秒) .
在这里,我们还可以有多个具有不同延迟的延迟对象。这种方法也将提供高吞吐量。
我下面的实现可以处理任意请求时间精度,每个请求的时间复杂度为 O(1),不需要任何额外的缓冲区,例如 O(1) 空间复杂度,此外它不需要后台线程释放令牌,而是令牌根据自上次请求以来经过的时间释放。
class RateLimiter {
int limit;
double available;
long interval;
long lastTimeStamp;
RateLimiter(int limit, long interval) {
this.limit = limit;
this.interval = interval;
available = 0;
lastTimeStamp = System.currentTimeMillis();
}
synchronized boolean canAdd() {
long now = System.currentTimeMillis();
// more token are released since last request
available += (now-lastTimeStamp)*1.0/interval*limit;
if (available>limit)
available = limit;
if (available<1)
return false;
else {
available--;
lastTimeStamp = now;
return true;
}
}
}
尝试使用这种简单的方法:
public class SimpleThrottler {
private static final int T = 1; // min
private static final int N = 345;
private Lock lock = new ReentrantLock();
private Condition newFrame = lock.newCondition();
private volatile boolean currentFrame = true;
public SimpleThrottler() {
handleForGate();
}
/**
* Payload
*/
private void job() {
try {
Thread.sleep(Math.abs(ThreadLocalRandom.current().nextLong(12, 98)));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.err.print(" J. ");
}
public void doJob() throws InterruptedException {
lock.lock();
try {
while (true) {
int count = 0;
while (count < N && currentFrame) {
job();
count++;
}
newFrame.await();
currentFrame = true;
}
} finally {
lock.unlock();
}
}
public void handleForGate() {
Thread handler = new Thread(() -> {
while (true) {
try {
Thread.sleep(1 * 900);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
currentFrame = false;
lock.lock();
try {
newFrame.signal();
} finally {
lock.unlock();
}
}
}
});
handler.start();
}
}
Apache Camel还支持自带Throttler机制如下:
from("seda:a").throttle(100).asyncDelayed().to("seda:b");
这是对上述 LeakyBucket 代码的更新。这适用于每秒超过 1000 个请求。
import lombok.SneakyThrows;
import java.util.concurrent.TimeUnit;
class LeakyBucket {
private long minTimeNano; // sec / billion
private long sched = System.nanoTime();
/**
* Create a rate limiter using the leakybucket alg.
* @param perSec the number of requests per second
*/
public LeakyBucket(double perSec) {
if (perSec <= 0.0) {
throw new RuntimeException("Invalid rate " + perSec);
}
this.minTimeNano = (long) (1_000_000_000.0 / perSec);
}
@SneakyThrows public void consume() {
long curr = System.nanoTime();
long timeLeft;
synchronized (this) {
timeLeft = sched - curr + minTimeNano;
sched += minTimeNano;
}
if (timeLeft <= minTimeNano) {
return;
}
TimeUnit.NANOSECONDS.sleep(timeLeft);
}
}
和上面的单元测试:
import com.google.common.base.Stopwatch;
import org.junit.Ignore;
import org.junit.Test;
import java.util.concurrent.TimeUnit;
import java.util.stream.IntStream;
public class LeakyBucketTest {
@Test @Ignore public void t() {
double numberPerSec = 10000;
LeakyBucket b = new LeakyBucket(numberPerSec);
Stopwatch w = Stopwatch.createStarted();
IntStream.range(0, (int) (numberPerSec * 5)).parallel().forEach(
x -> b.consume());
System.out.printf("%,d ms%n", w.elapsed(TimeUnit.MILLISECONDS));
}
}
这是一个简单的速率限制器的高级版本
/**
* Simple request limiter based on Thread.sleep method.
* Create limiter instance via {@link #create(float)} and call {@link #consume()} before making any request.
* If the limit is exceeded cosume method locks and waits for current call rate to fall down below the limit
*/
public class RequestRateLimiter {
private long minTime;
private long lastSchedAction;
private double avgSpent = 0;
ArrayList<RatePeriod> periods;
@AllArgsConstructor
public static class RatePeriod{
@Getter
private LocalTime start;
@Getter
private LocalTime end;
@Getter
private float maxRate;
}
/**
* Create request limiter with maxRate - maximum number of requests per second
* @param maxRate - maximum number of requests per second
* @return
*/
public static RequestRateLimiter create(float maxRate){
return new RequestRateLimiter(Arrays.asList( new RatePeriod(LocalTime.of(0,0,0),
LocalTime.of(23,59,59), maxRate)));
}
/**
* Create request limiter with ratePeriods calendar - maximum number of requests per second in every period
* @param ratePeriods - rate calendar
* @return
*/
public static RequestRateLimiter create(List<RatePeriod> ratePeriods){
return new RequestRateLimiter(ratePeriods);
}
private void checkArgs(List<RatePeriod> ratePeriods){
for (RatePeriod rp: ratePeriods ){
if ( null == rp || rp.maxRate <= 0.0f || null == rp.start || null == rp.end )
throw new IllegalArgumentException("list contains null or rate is less then zero or period is zero length");
}
}
private float getCurrentRate(){
LocalTime now = LocalTime.now();
for (RatePeriod rp: periods){
if ( now.isAfter( rp.start ) && now.isBefore( rp.end ) )
return rp.maxRate;
}
return Float.MAX_VALUE;
}
private RequestRateLimiter(List<RatePeriod> ratePeriods){
checkArgs(ratePeriods);
periods = new ArrayList<>(ratePeriods.size());
periods.addAll(ratePeriods);
this.minTime = (long)(1000.0f / getCurrentRate());
this.lastSchedAction = System.currentTimeMillis() - minTime;
}
/**
* Call this method before making actual request.
* Method call locks until current rate falls down below the limit
* @throws InterruptedException
*/
public void consume() throws InterruptedException {
long timeLeft;
synchronized(this) {
long curTime = System.currentTimeMillis();
minTime = (long)(1000.0f / getCurrentRate());
timeLeft = lastSchedAction + minTime - curTime;
long timeSpent = curTime - lastSchedAction + timeLeft;
avgSpent = (avgSpent + timeSpent) / 2;
if(timeLeft <= 0) {
lastSchedAction = curTime;
return;
}
lastSchedAction = curTime + timeLeft;
}
Thread.sleep(timeLeft);
}
public synchronized float getCuRate(){
return (float) ( 1000d / avgSpent);
}
}
和单元测试
import org.junit.Assert;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class RequestRateLimiterTest {
@Test(expected = IllegalArgumentException.class)
public void checkSingleThreadZeroRate(){
// Zero rate
RequestRateLimiter limiter = RequestRateLimiter.create(0);
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
@Test
public void checkSingleThreadUnlimitedRate(){
// Unlimited
RequestRateLimiter limiter = RequestRateLimiter.create(Float.MAX_VALUE);
long started = System.currentTimeMillis();
for ( int i = 0; i < 1000; i++ ){
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( ((ended - started) < 1000));
}
@Test
public void rcheckSingleThreadRate(){
// 3 request per minute
RequestRateLimiter limiter = RequestRateLimiter.create(3f/60f);
long started = System.currentTimeMillis();
for ( int i = 0; i < 3; i++ ){
try {
limiter.consume();
Thread.sleep(20000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( ((ended - started) >= 60000 ) & ((ended - started) < 61000));
}
@Test
public void checkSingleThreadRateLimit(){
// 100 request per second
RequestRateLimiter limiter = RequestRateLimiter.create(100);
long started = System.currentTimeMillis();
for ( int i = 0; i < 1000; i++ ){
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( (ended - started) >= ( 10000 - 100 ));
}
@Test
public void checkMultiThreadedRateLimit(){
// 100 request per second
RequestRateLimiter limiter = RequestRateLimiter.create(100);
long started = System.currentTimeMillis();
List<Future<?>> tasks = new ArrayList<>(10);
ExecutorService exec = Executors.newFixedThreadPool(10);
for ( int i = 0; i < 10; i++ ) {
tasks.add( exec.submit(() -> {
for (int i1 = 0; i1 < 100; i1++) {
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}) );
}
tasks.stream().forEach( future -> {
try {
future.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( (ended - started) >= ( 10000 - 100 ) );
}
@Test
public void checkMultiThreaded32RateLimit(){
// 0,2 request per second
RequestRateLimiter limiter = RequestRateLimiter.create(0.2f);
long started = System.currentTimeMillis();
List<Future<?>> tasks = new ArrayList<>(8);
ExecutorService exec = Executors.newFixedThreadPool(8);
for ( int i = 0; i < 8; i++ ) {
tasks.add( exec.submit(() -> {
for (int i1 = 0; i1 < 2; i1++) {
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}) );
}
tasks.stream().forEach( future -> {
try {
future.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( (ended - started) >= ( 10000 - 100 ) );
}
@Test
public void checkMultiThreadedRateLimitDynamicRate(){
// 100 request per second
RequestRateLimiter limiter = RequestRateLimiter.create(100);
long started = System.currentTimeMillis();
List<Future<?>> tasks = new ArrayList<>(10);
ExecutorService exec = Executors.newFixedThreadPool(10);
for ( int i = 0; i < 10; i++ ) {
tasks.add( exec.submit(() -> {
Random r = new Random();
for (int i1 = 0; i1 < 100; i1++) {
try {
limiter.consume();
Thread.sleep(r.nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}) );
}
tasks.stream().forEach( future -> {
try {
future.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( (ended - started) >= ( 10000 - 100 ) );
}
}
我的解决方案:一个简单的 util 方法,你可以修改它来创建一个包装类。
public static Runnable throttle (Runnable realRunner, long delay) {
Runnable throttleRunner = new Runnable() {
// whether is waiting to run
private boolean _isWaiting = false;
// target time to run realRunner
private long _timeToRun;
// specified delay time to wait
private long _delay = delay;
// Runnable that has the real task to run
private Runnable _realRunner = realRunner;
@Override
public void run() {
// current time
long now;
synchronized (this) {
// another thread is waiting, skip
if (_isWaiting) return;
now = System.currentTimeMillis();
// update time to run
// do not update it each time since
// you do not want to postpone it unlimited
_timeToRun = now+_delay;
// set waiting status
_isWaiting = true;
}
try {
Thread.sleep(_timeToRun-now);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// clear waiting status before run
_isWaiting = false;
// do the real task
_realRunner.run();
}
}};
return throttleRunner;
}