您可以在您的平铺矩阵中使用Bresenham 的圆算法(第 3.3 节,扫描转换圆) (它仅使用整数算术,非常准确并处理整个圆的第四部分以产生整个圆周)来检测那些形成圆周,然后从上到下(或从左到右)跟踪它们之间的线:
以下是圆算法的伪实现:
static void circle(int x0, int y0, int x1, int y1) {
// Bresenham's Circle Algorithm
int x, y, d, deltaE, deltaSE;
int radius, center_x, center_y;
bool change_x = false;
bool change_y = false;
if( x0 > x1 ) {
// swap x values
x = x0;
x0 = x1;
x1 = x;
change_x = true;
}
if( y0 > y1 ) {
// swap y values
y = y0;
y0 = y1;
y1 = y;
change_y = true;
}
int dx = x1 - x0;
int dy = y1 - y0;
radius = dx > dy ? (dy >> 1) : (dx >> 1);
center_x = change_x ? x0 - radius : x0 + radius;
center_y = change_y ? y0 - radius : y0 + radius;
x = 0;
y = radius;
d = 1 - radius;
deltaE = 3;
// -2 * radius + 5
deltaSE = -(radius << 1) + 5;
while(y > x) {
if(d < 0) {
d += deltaE;
deltaE += 2;
deltaSE += 2;
x++;
} else {
d += deltaSE;
deltaE += 2;
deltaSE += 4;
x++;
y--;
}
checkTiles(x, y, center_x, center_y);
}
}
void checkTiles(int x, int y, int center_x, int center_y) {
// here, you iterate tiles up-to-down from ( x + center_x, -y + center_y) to (x + center_x, y + center_y)
// in one straigh line using a for loop
for (int j = -y + center_y; j < y + center_y; ++j)
checkTileAt(x + center_x, j);
// Iterate tiles up-to-down from ( y + center_x, -x + center_y) to ( y + center_x, x + center_y)
for (int j = -x + center_y; j < x + center_y; ++j)
checkTileAt(y + center_x, j);
// Iterate tiles up-to-down from (-x + center_x, -y + center_y) to (-x + center_x, y + center_y)
for (int j = -y + center_y; j < y + center_y; ++j)
checkTileAt(-x + center_x, j);
// here, you iterate tiles up-to-down from (-y + center_x, -x + center_y) to (-y + center_x, x + center_y)
for (int j = -x + center_y; j < x + center_y; ++j)
checkTileAt(-y + center_x, j);
}
使用这种技术,您应该只处理所需的图块(并且只处理四分之一圆之后),不会检查任何不必要的图块。除此之外,它仅使用整数运算,这使它非常快(推论和解释可以在提供的书籍链接中找到),并且生成的圆周被证明是真实圆周的最佳近似值。