我是 python 新手,需要帮助!我正在练习 python NLTK 文本分类。这是我在 http://www.laurentluce.com/posts/twitter-sentiment-analysis-using-python-and-nltk/上练习的代码示例
我试过这个
from nltk import bigrams
from nltk.probability import ELEProbDist, FreqDist
from nltk import NaiveBayesClassifier
from collections import defaultdict
train_samples = {}
with file ('positive.txt', 'rt') as f:
for line in f.readlines():
train_samples[line]='pos'
with file ('negative.txt', 'rt') as d:
for line in d.readlines():
train_samples[line]='neg'
f=open("test.txt", "r")
test_samples=f.readlines()
def bigramReturner(text):
tweetString = text.lower()
bigramFeatureVector = {}
for item in bigrams(tweetString.split()):
bigramFeatureVector.append(' '.join(item))
return bigramFeatureVector
def get_labeled_features(samples):
word_freqs = {}
for text, label in train_samples.items():
tokens = text.split()
for token in tokens:
if token not in word_freqs:
word_freqs[token] = {'pos': 0, 'neg': 0}
word_freqs[token][label] += 1
return word_freqs
def get_label_probdist(labeled_features):
label_fd = FreqDist()
for item,counts in labeled_features.items():
for label in ['neg','pos']:
if counts[label] > 0:
label_fd.inc(label)
label_probdist = ELEProbDist(label_fd)
return label_probdist
def get_feature_probdist(labeled_features):
feature_freqdist = defaultdict(FreqDist)
feature_values = defaultdict(set)
num_samples = len(train_samples) / 2
for token, counts in labeled_features.items():
for label in ['neg','pos']:
feature_freqdist[label, token].inc(True, count=counts[label])
feature_freqdist[label, token].inc(None, num_samples - counts[label])
feature_values[token].add(None)
feature_values[token].add(True)
for item in feature_freqdist.items():
print item[0],item[1]
feature_probdist = {}
for ((label, fname), freqdist) in feature_freqdist.items():
probdist = ELEProbDist(freqdist, bins=len(feature_values[fname]))
feature_probdist[label,fname] = probdist
return feature_probdist
labeled_features = get_labeled_features(train_samples)
label_probdist = get_label_probdist(labeled_features)
feature_probdist = get_feature_probdist(labeled_features)
classifier = NaiveBayesClassifier(label_probdist, feature_probdist)
for sample in test_samples:
print "%s | %s" % (sample, classifier.classify(bigramReturner(sample)))
但是得到这个错误,为什么?
Traceback (most recent call last):
File "C:\python\naive_test.py", line 76, in <module>
print "%s | %s" % (sample, classifier.classify(bigramReturner(sample)))
File "C:\python\naive_test.py", line 23, in bigramReturner
bigramFeatureVector.append(' '.join(item))
AttributeError: 'dict' object has no attribute 'append'