5

我正在研究一个在大背景图像中有一个矩形图像的实现。我正在尝试以编程方式从大图像中检索矩形图像并从该特定矩形图像中检索文本信息。我正在尝试使用 Open-CV 第三方框架,但无法从大背景图像中检索矩形图像。有人可以指导我,我怎么能做到这一点?

更新:

我找到了使用 OpenCV 找出正方形的链接。我可以修改它以查找矩形形状吗?有人可以指导我吗?

最新更新:

我终于得到了代码,下面是它。

    - (cv::Mat)cvMatWithImage:(UIImage *)image
{
    CGColorSpaceRef colorSpace = CGImageGetColorSpace(image.CGImage);
    CGFloat cols = image.size.width;
    CGFloat rows = image.size.height;

    cv::Mat cvMat(rows, cols, CV_8UC4); // 8 bits per component, 4 channels

    CGContextRef contextRef = CGBitmapContextCreate(cvMat.data,                 // Pointer to backing data
                                                    cols,                       // Width of bitmap
                                                    rows,                       // Height of bitmap
                                                    8,                          // Bits per component
                                                    cvMat.step[0],              // Bytes per row
                                                    colorSpace,                 // Colorspace
                                                    kCGImageAlphaNoneSkipLast |
                                                    kCGBitmapByteOrderDefault); // Bitmap info flags

    CGContextDrawImage(contextRef, CGRectMake(0, 0, cols, rows), image.CGImage);
    CGContextRelease(contextRef);

    return cvMat;
}
-(UIImage *)UIImageFromCVMat:(cv::Mat)cvMat
{
    NSData *data = [NSData dataWithBytes:cvMat.data length:cvMat.elemSize()*cvMat.total()];
    CGColorSpaceRef colorSpace;
    if ( cvMat.elemSize() == 1 ) {
        colorSpace = CGColorSpaceCreateDeviceGray();
    }
    else {
        colorSpace = CGColorSpaceCreateDeviceRGB();
    }

    //CFDataRef data;
    CGDataProviderRef provider = CGDataProviderCreateWithCFData( (CFDataRef) data ); // It SHOULD BE (__bridge CFDataRef)data
    CGImageRef imageRef = CGImageCreate( cvMat.cols, cvMat.rows, 8, 8 * cvMat.elemSize(), cvMat.step[0], colorSpace, kCGImageAlphaNone|kCGBitmapByteOrderDefault, provider, NULL, false, kCGRenderingIntentDefault );
    UIImage *finalImage = [UIImage imageWithCGImage:imageRef];
    CGImageRelease( imageRef );
    CGDataProviderRelease( provider );
    CGColorSpaceRelease( colorSpace );
    return finalImage;
}
-(void)forOpenCV
{
    imageView = [UIImage imageNamed:@"myimage.jpg"];
    if( imageView != nil )
    {
        cv::Mat tempMat = [imageView CVMat];

        cv::Mat greyMat = [self cvMatWithImage:imageView];
        cv::vector<cv::vector<cv::Point> > squares;

        cv::Mat img= [self debugSquares: squares: greyMat];

        imageView = [self UIImageFromCVMat: img];

        self.imageView.image = imageView;
    }
}

double angle( cv::Point pt1, cv::Point pt2, cv::Point pt0 ) {
    double dx1 = pt1.x - pt0.x;
    double dy1 = pt1.y - pt0.y;
    double dx2 = pt2.x - pt0.x;
    double dy2 = pt2.y - pt0.y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

- (cv::Mat) debugSquares: (std::vector<std::vector<cv::Point> >) squares : (cv::Mat &)image
{
    NSLog(@"%lu",squares.size());

    // blur will enhance edge detection

    //cv::Mat blurred(image);
    cv::Mat blurred = image.clone();
    medianBlur(image, blurred, 9);

    cv::Mat gray0(image.size(), CV_8U), gray;
    cv::vector<cv::vector<cv::Point> > contours;

    // find squares in every color plane of the image
    for (int c = 0; c < 3; c++)
    {
        int ch[] = {c, 0};
        mixChannels(&image, 1, &gray0, 1, ch, 1);

        // try several threshold levels
        const int threshold_level = 2;
        for (int l = 0; l < threshold_level; l++)
        {
            // Use Canny instead of zero threshold level!
            // Canny helps to catch squares with gradient shading
            if (l == 0)
            {
                Canny(gray0, gray, 10, 20, 3); //

                // Dilate helps to remove potential holes between edge segments
                dilate(gray, gray, cv::Mat(), cv::Point(-1,-1));
            }
            else
            {
                gray = gray0 >= (l+1) * 255 / threshold_level;
            }

            // Find contours and store them in a list
            findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);

            // Test contours
            cv::vector<cv::Point> approx;
            for (size_t i = 0; i < contours.size(); i++)
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                approxPolyDP(cv::Mat(contours[i]), approx, arcLength(cv::Mat(contours[i]), true)*0.02, true);

                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if (approx.size() == 4 &&
                    fabs(contourArea(cv::Mat(approx))) > 1000 &&
                    isContourConvex(cv::Mat(approx)))
                {
                    double maxCosine = 0;

                    for (int j = 2; j < 5; j++)
                    {
                        double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
                        maxCosine = MAX(maxCosine, cosine);
                    }

                    if (maxCosine < 0.3)
                        squares.push_back(approx);
                }
            }
        }
    }

    NSLog(@"squares.size(): %lu",squares.size());


    for( size_t i = 0; i < squares.size(); i++ )
    {
        cv::Rect rectangle = boundingRect(cv::Mat(squares[i]));
        NSLog(@"rectangle.x: %d", rectangle.x);
        NSLog(@"rectangle.y: %d", rectangle.y);

        if(i==squares.size()-1)////Detecting Rectangle here
        {
            const cv::Point* p = &squares[i][0];

            int n = (int)squares[i].size();

            NSLog(@"%d",n);

            line(image, cv::Point(507,418), cv::Point(507+1776,418+1372), cv::Scalar(255,0,0),2,8);

            polylines(image, &p, &n, 1, true, cv::Scalar(255,255,0), 5, CV_AA);

            int fx1=rectangle.x;
                NSLog(@"X: %d", fx1);
            int fy1=rectangle.y;
                NSLog(@"Y: %d", fy1);
            int fx2=rectangle.x+rectangle.width;
                NSLog(@"Width: %d", fx2);
            int fy2=rectangle.y+rectangle.height;
                NSLog(@"Height: %d", fy2);

            line(image, cv::Point(fx1,fy1), cv::Point(fx2,fy2), cv::Scalar(0,0,255),2,8);

        }

    }

    return image;
}

谢谢你。

4

2 回答 2

6

这是一个完整的答案,它使用一个小型包装类将 c++ 与 Objective-c 代码分开。

我不得不在 stackoverflow 上提出另一个问题来处理我糟糕的 c++ 知识——但我已经以示例代码为例,计算出了将 c++ 与 Objective-c 代码干净地接口所需的一切。squares.cpp其目的是尽可能保持原始 c++ 代码的原始性,并将 openCV 的大部分工作保留在纯 c++ 文件中以实现(不)可移植性。

我保留了我原来的答案,因为这似乎超出了编辑范围。完整的demo项目在github上

CVViewController.h / CVViewController.m

  • 纯Objective-C

  • 通过 WRAPPER 与 openCV c++ 代码进行通信......它既不知道也不关心 c++ 正在处理包装器后面的这些方法调用。

CVWrapper.h / CVWrapper.mm

  • 客观-C++

做的越少越好,真的只有两件事……

  • 调用 UIImage objC++ 类别来转换 UIImage <> cv::Mat
  • 在 CVViewController 的 obj-C 方法和 CVSquares c++(类)函数调用之间进行调解

CVSquares.h / CVSquares.cpp

  • 纯 C++
  • CVSquares.cpp在类定义中声明公共函数(在本例中为一个静态函数)。
    这将替换 main{}原始文件中的工作。
  • 为了可移植性,我们尝试CVSquares.cpp尽可能接近 C++ 原版。

CVViewController.m

//remove 'magic numbers' from original C++ source so we can manipulate them from obj-C
#define TOLERANCE 0.01
#define THRESHOLD 50
#define LEVELS 9

UIImage* image =
        [CVSquaresWrapper detectedSquaresInImage:self.image
                                       tolerance:TOLERANCE
                                       threshold:THRESHOLD
                                          levels:LEVELS];

CVsquaresWrapper.h

//  CVSquaresWrapper.h

#import <Foundation/Foundation.h>

@interface CVSquaresWrapper : NSObject

+ (UIImage*) detectedSquaresInImage:(UIImage*)image
                          tolerance:(CGFloat)tolerance
                          threshold:(NSInteger)threshold
                             levels:(NSInteger)levels;

@end

CVSquaresWrapper.mm

//  CVSquaresWrapper.mm
//  wrapper that talks to c++ and to obj-c classes

#import "CVSquaresWrapper.h"
#import "CVSquares.h"
#import "UIImage+OpenCV.h"

@implementation CVSquaresWrapper

+ (UIImage*) detectedSquaresInImage:(UIImage*) image
                          tolerance:(CGFloat)tolerance
                          threshold:(NSInteger)threshold
                             levels:(NSInteger)levels
{
    UIImage* result = nil;

        //convert from UIImage to cv::Mat openCV image format
        //this is a category on UIImage
    cv::Mat matImage = [image CVMat]; 


        //call the c++ class static member function
        //we want this function signature to exactly 
        //mirror the form of the calling method 
    matImage = CVSquares::detectedSquaresInImage (matImage, tolerance, threshold, levels);


        //convert back from cv::Mat openCV image format
        //to UIImage image format (category on UIImage)
    result = [UIImage imageFromCVMat:matImage]; 

    return result;
}

@end

CVsquares.h

//  CVSquares.h

#ifndef __OpenCVClient__CVSquares__
#define __OpenCVClient__CVSquares__

    //class definition
    //in this example we do not need a class 
    //as we have no instance variables and just one static function. 
    //We could instead just declare the function but this form seems clearer

class CVSquares
{
public:
    static cv::Mat detectedSquaresInImage (cv::Mat image, float tol, int threshold, int levels);
};

#endif /* defined(__OpenCVClient__CVSquares__) */

CVsquares.cpp

//  CVSquares.cpp

#include "CVSquares.h"

using namespace std;
using namespace cv;

static int thresh = 50, N = 11;
static float tolerance = 0.01;

    //declarations added so that we can move our 
    //public function to the top of the file
static void findSquares(  const Mat& image,   vector<vector<Point> >& squares );
static void drawSquares( Mat& image, vector<vector<Point> >& squares );

    //this public function performs the role of 
    //main{} in the original file (main{} is deleted)
cv::Mat CVSquares::detectedSquaresInImage (cv::Mat image, float tol, int threshold, int levels)
{
    vector<vector<Point> > squares;

    if( image.empty() )
        {
        cout << "Couldn't load " << endl;
        }

    tolerance = tol;
    thresh = threshold;
    N = levels;
    findSquares(image, squares);
    drawSquares(image, squares);

    return image;
}


// the rest of this file is identical to the original squares.cpp except:
// main{} is removed
// this line is removed from drawSquares: 
// imshow(wndname, image); 
// (obj-c will do the drawing)

UIImage+OpenCV.h

UIImage 类别是一个 objC++ 文件,其中包含在 UIImage 和 cv::Mat 图像格式之间进行转换的代码。这是您移动两种方法的-(UIImage *)UIImageFromCVMat:(cv::Mat)cvMat地方- (cv::Mat)cvMatWithImage:(UIImage *)image

//UIImage+OpenCV.h

#import <UIKit/UIKit.h>

@interface UIImage (UIImage_OpenCV)

    //cv::Mat to UIImage
+ (UIImage *)imageFromCVMat:(cv::Mat&)cvMat;

    //UIImage to cv::Mat
- (cv::Mat)CVMat;


@end        

此处的方法实现与您的代码相同(尽管我们没有传入 UIImage 进行转换,而是参考self

于 2013-01-02T14:19:49.280 回答
2

这是部分答案。它并不完整,因为我正在尝试做完全相同的事情,并且每一步都遇到了巨大的困难。我对 Objective-C 的了解非常强,但对 C++ 的了解却很薄弱

您应该阅读本指南以包装 c++

以及Ievgen Khvedchenia 的计算机视觉讲座博客上的所有内容,尤其是openCV教程。Ievgen 还在github 上发布了一个非常完整的项目来配合教程。

话虽如此,我仍然很难让 openCV 顺利编译和运行。

例如,Ievgen 的教程作为一个完成的项目运行良好,但如果我尝试从头开始重新创建它,我会遇到一直困扰我的相同 openCV 编译错误。这可能是我对 C++ 的理解不足,它与 obj-C 的集成。

关于 squares.cpp

你需要做什么

  • int main(int /*argc*/, char** /*argv*/)从 squares.cpp 中删除
  • imshow(wndname, image);从 drawSquares中删除(obj-c 将进行绘图)
  • 创建头文件 squares.h
  • 在头文件中创建一个或两个公共函数,您可以从 obj-c(或从 obj-c/c++ 包装器)调用它们

这是我到目前为止...

class squares
{
public:
         static cv::Mat& findSquares( const cv::Mat& image, cv::vector<cv::vector<cv::Point> >& squares );
         static cv::Mat& drawSquares( cv::Mat& image, const cv::vector<cv::vector<cv::Point> >& squares );

};

您应该能够将其简化为一种方法,例如processSquares使用一个 inputcv::Mat& image和一个 return cv::Mat& image。该方法将在 .cpp 文件中声明squares并调用findSquares和。drawSquares

包装器将接受输入 UIImage,将其转换为cv::Mat image,使用该输入调用processSquares,并获得结果cv::Mat image。该结果将转换回 NSImage 并传递回 objc 调用函数。

所以这是我们需要做的一个简洁的草图,一旦我真正做到了,我会尝试扩展这个答案

于 2012-12-27T13:12:53.337 回答