我使用以下代码计算具有指定内核的图像的卷积(在我的情况下为高斯)。每次我得到不同的结果,结果图像甚至不接近我在空间域中通过卷积获得的图像。首先,我认为问题出在图像的数据类型上。我将它们更改为 32 和 64,但结果仍然相同。谁能告诉我可能出了什么问题?
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html#dft 上面的这个函数给了我一个黑色的图像。我有灰度输入。
void convol_fft(const Mat& A,const vector<vector<float>>& kernel2d,Mat& result)
{
Mat B = Mat(3,3,CV_64F);
for (int row = 0; row < kernel2d.size(); row++)
for (int col = 0; col < kernel2d[row].size(); col++){
B.at<uchar>(row,col) = (uchar)kernel2d[row][col];
}
int dft_M = getOptimalDFTSize( A.rows+B.rows-1 );
int dft_N = getOptimalDFTSize( A.cols+B.cols-1 );
Mat dft_A = Mat::zeros(dft_M, dft_N, CV_64F);
Mat dft_B = Mat::zeros(dft_M, dft_N, CV_64F);
Mat dft_A_part = dft_A(Rect(0, 0, A.cols,A.rows));
A.convertTo(dft_A_part, dft_A_part.type(), 1, -mean(A)[0]);
Mat dft_B_part = dft_B(Rect(0, 0, B.cols,B.rows));
B.convertTo(dft_B_part, dft_B_part.type(), 1, -mean(B)[0]);
dft(dft_A, dft_A, 0, A.rows);
dft(dft_B, dft_B, 0, B.rows);
// set the last parameter to false to compute convolution instead of correlation
mulSpectrums( dft_A, dft_B, dft_A, 0, false );
idft(dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1 );
result = dft_A(Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));
normalize(result, result, 0, 1, NORM_MINMAX, result.type());
pow(result, 3., result);
// B ^= Scalar::all(255);
}