我会使用某种散列函数来创建指向 u64 对的索引,其中一个是创建键的值,另一个是替换值。从技术上讲,如果您需要节省空间但我会使用 u32s,则索引可能是三个字节长(假设 1600 万-“1600 万”-对)。如果存储的值与(哈希冲突)计算的值不匹配,您将输入溢出处理程序。
- 您需要确定自定义散列算法以适合您的数据
- 由于您知道数据的大小,因此您不需要允许数据增长的算法。
- 我会警惕使用一些标准算法,因为它们很少适合特定数据
- 除非您确定代码是所见即所得(不会产生很多不可见的调用),否则我会警惕使用 C++ 方法
- 您的索引应该比对数大 25%
遍历所有可能的输入并确定碰撞次数的最小值、最大值、平均值和标准偏差,并使用这些来确定可接受的性能水平。然后配置文件以实现最佳代码。
所需的内存空间(使用 u32 索引)为 (4*1.25)+8+8 = 每对 21 个字节或 336 MeB,在典型的 PC 上没有问题。
________ 编辑________
我受到“RocketRoy”的挑战,要把钱放在嘴边。开始:
该问题与(固定大小)哈希索引中的冲突处理有关。设置舞台:
- 我有一个 n 条目的列表,其中条目中的一个字段包含计算哈希值的 v
- 我有一个 n*1.25(大约)indeces 的向量,使得 indeces 的数量 x 是一个素数
- 计算一个素数 y,它是 x 的一部分
- 向量初始化为 -1 表示未占用
很标准的东西,我想你会同意的。
列表中的条目被处理,哈希值 h 被计算和取模并用作向量的索引,条目的索引被放置在那里。
最终我遇到了索引指向的向量条目被占用(不包含-1)的情况——瞧,碰撞。
那我该怎么办?我将原始 h 保留为 ho,将 y 添加到 h 并取模 x 并在向量中获得一个新索引。如果条目未被占用,我使用它,否则我继续添加 y 模 x 直到我到达 ho。理论上,这会发生,因为 x 和 y 都是素数。在实践中 x 大于 n 所以它不会。
因此,RocketRoy 声称的“重新散列”成本很高,这不是这样的事情。
这种方法的棘手部分 - 与所有散列方法一样 - 是:
- 为 x 确定一个合适的值(最终使用的 x 越大,难度就越大)
- 为 h=a(v)%x 确定算法 a 使得 h 的索引合理均匀(“随机”)进入索引向量,并尽可能少地发生冲突
- 为 y 确定一个合适的值,以使碰撞合理地均匀(“随机”)索引到索引向量中
________ 编辑________
很抱歉,我花了这么长时间来编写这段代码……其他事情有更高的优先级。
无论如何,这是证明散列比二叉树具有更好的快速查找前景的代码。它通过一堆散列索引大小和算法来帮助找到最适合特定数据的组合。对于每种算法,代码将打印第一个索引大小,这样查找所需的时间不会超过 14 次搜索(二进制搜索的最坏情况),平均查找需要少于 1.5 次搜索。
如果您没有注意到,我喜欢在这些类型的应用程序中使用素数。
有许多方法可以创建具有强制溢出处理的散列算法。我选择了简单,假设它会转化为速度……确实如此。在我的带有 i5 M 480 @ 2.67 GHz 的笔记本电脑上,平均查找需要 55 到 60 个时钟周期(大约每秒 4500 万次查找)。我实现了一个特殊的 get 操作,具有恒定数量的 indeces 和同上的 rehash 值,循环计数下降到 40(每秒 6500 万次查找)。如果您查看调用 getOpSpec 的行,则索引 i 与 0x444 进行异或运算,以使用缓存来获得更多类似于“真实世界”的结果。
我必须再次指出,该程序为特定数据建议了合适的组合。其他数据可能需要不同的组合。
源代码包含生成 16000 个无符号长长对和测试不同常量(索引大小和重新散列值)的代码:
#include <windows.h>
#define i8 signed char
#define i16 short
#define i32 long
#define i64 long long
#define id i64
#define u8 char
#define u16 unsigned short
#define u32 unsigned long
#define u64 unsigned long long
#define ud u64
#include <string.h>
#include <stdio.h>
u64 prime_find_next (const u64 value);
u64 prime_find_previous (const u64 value);
static inline volatile unsigned long long rdtsc_to_rax (void)
{
unsigned long long lower,upper;
asm volatile( "rdtsc\n"
: "=a"(lower), "=d"(upper));
return lower|(upper<<32);
}
static u16 index[65536];
static u64 nindeces,rehshFactor;
static struct PAIRS {u64 oval,rval;} pairs[16000] = {
#include "pairs.h"
};
struct HASH_STATS
{
u64 ninvocs,nrhshs,nworst;
} getOpStats,putOpStats;
i8 putOp (u16 index[], const struct PAIRS data[], const u64 oval, const u64 ci)
{
u64 nworst=1,ho,h,i;
i8 success=1;
++putOpStats.ninvocs;
ho=oval%nindeces;
h=ho;
do
{
i=index[h];
if (i==0xffff) /* unused position */
{
index[h]=(u16)ci;
goto added;
}
if (oval==data[i].oval) goto duplicate;
++putOpStats.nrhshs;
++nworst;
h+=rehshFactor;
if (h>=nindeces) h-=nindeces;
} while (h!=ho);
exhausted: /* should not happen */
duplicate:
success=0;
added:
if (nworst>putOpStats.nworst) putOpStats.nworst=nworst;
return success;
}
i8 getOp (u16 index[], const struct PAIRS data[], const u64 oval, u64 *rval)
{
u64 ho,h,i;
i8 success=1;
ho=oval%nindeces;
h=ho;
do
{
i=index[h];
if (i==0xffffu) goto not_found; /* unused position */
if (oval==data[i].oval)
{
*rval=data[i].rval; /* fetch the replacement value */
goto found;
}
h+=rehshFactor;
if (h>=nindeces) h-=nindeces;
} while (h!=ho);
exhausted:
not_found: /* should not happen */
success=0;
found:
return success;
}
volatile i8 stop = 0;
int main (int argc, char *argv[])
{
u64 i,rval,mulup,divdown,start;
double ave;
SetThreadAffinityMask (GetCurrentThread(), 0x00000004ull);
divdown=5; //5
while (divdown<=100)
{
mulup=3; // 3
while (mulup<divdown)
{
nindeces=16000;
while (nindeces<65500)
{
nindeces= prime_find_next (nindeces);
rehshFactor=nindeces*mulup/divdown;
rehshFactor=prime_find_previous (rehshFactor);
memset (index, 0xff, sizeof(index));
memset (&putOpStats, 0, sizeof(struct HASH_STATS));
i=0;
while (i<16000)
{
if (!putOp (index, pairs, pairs[i].oval, (u16) i)) stop=1;
++i;
}
ave=(double)(putOpStats.ninvocs+putOpStats.nrhshs)/(double)putOpStats.ninvocs;
if (ave<1.5 && putOpStats.nworst<15)
{
start=rdtsc_to_rax ();
i=0;
while (i<16000)
{
if (!getOp (index, pairs, pairs[i^0x0444]. oval, &rval)) stop=1;
++i;
}
start=rdtsc_to_rax ()-start+8000; /* 8000 is half of 16000 (pairs), for rounding */
printf ("%u;%u;%u;%u;%1.3f;%u;%u\n", (u32)mulup, (u32)divdown, (u32)nindeces, (u32)rehshFactor, ave, (u32) putOpStats.nworst, (u32) (start/16000ull));
goto found;
}
nindeces+=2;
}
printf ("%u;%u\n", (u32)mulup, (u32)divdown);
found:
mulup=prime_find_next (mulup);
}
divdown=prime_find_next (divdown);
}
SetThreadAffinityMask (GetCurrentThread(), 0x0000000fu);
return 0;
}
无法包含生成的对文件(答案显然限于 30000 个字符)。但是给我的收件箱发一条消息,我会邮寄的。
这些是结果:
3;5;35569;21323;1.390;14;73
3;7;33577;14389;1.435;14;60
5;7;32069;22901;1.474;14;61
3;11;35107;9551;1.412;14;59
5;11;33967;15427;1.446;14;61
7;11;34583;22003;1.422;14;59
3;13;34253;7901;1.439;14;61
5;13;34039;13063;1.443;14;60
7;13;32801;17659;1.456;14;60
11;13;33791;28591;1.436;14;59
3;17;34337;6053;1.413;14;59
5;17;32341;9511;1.470;14;61
7;17;32507;13381;1.474;14;62
11;17;33301;21529;1.454;14;60
13;17;34981;26737;1.403;13;59
3;19;33791;5333;1.437;14;60
5;19;35149;9241;1.403;14;59
7;19;33377;12289;1.439;14;97
11;19;34337;19867;1.417;14;59
13;19;34403;23537;1.430;14;61
17;19;33923;30347;1.467;14;61
3;23;33857;4409;1.425;14;60
5;23;34729;7547;1.429;14;60
7;23;32801;9973;1.456;14;61
11;23;33911;16127;1.445;14;60
13;23;33637;19009;1.435;13;60
17;23;34439;25453;1.426;13;60
19;23;33329;27529;1.468;14;62
3;29;32939;3391;1.474;14;62
5;29;34543;5953;1.437;13;60
7;29;34259;8263;1.414;13;59
11;29;34367;13033;1.409;14;60
13;29;33049;14813;1.444;14;60
17;29;34511;20219;1.422;14;60
19;29;33893;22193;1.445;13;61
23;29;34693;27509;1.412;13;92
3;31;34019;3271;1.441;14;60
5;31;33923;5449;1.460;14;61
7;31;33049;7459;1.442;14;60
11;31;35897;12721;1.389;14;59
13;31;35393;14831;1.397;14;59
17;31;33773;18517;1.425;14;60
19;31;33997;20809;1.442;14;60
23;31;34841;25847;1.417;14;59
29;31;33857;31667;1.426;14;60
3;37;32569;2633;1.476;14;61
5;37;34729;4691;1.419;14;59
7;37;34141;6451;1.439;14;60
11;37;34549;10267;1.410;13;60
13;37;35117;12329;1.423;14;60
17;37;34631;15907;1.429;14;63
19;37;34253;17581;1.435;14;60
23;37;32909;20443;1.453;14;61
29;37;33403;26177;1.445;14;60
31;37;34361;28771;1.413;14;59
3;41;34297;2503;1.424;14;60
5;41;33587;4093;1.430;14;60
7;41;34583;5903;1.404;13;59
11;41;32687;8761;1.440;14;60
13;41;34457;10909;1.439;14;60
17;41;34337;14221;1.425;14;59
19;41;32843;15217;1.476;14;62
23;41;35339;19819;1.423;14;59
29;41;34273;24239;1.436;14;60
31;41;34703;26237;1.414;14;60
37;41;33343;30089;1.456;14;61
3;43;34807;2423;1.417;14;59
5;43;35527;4129;1.413;14;60
7;43;33287;5417;1.467;14;61
11;43;33863;8647;1.436;14;60
13;43;34499;10427;1.418;14;78
17;43;34549;13649;1.431;14;60
19;43;33749;14897;1.429;13;60
23;43;34361;18371;1.409;14;59
29;43;33149;22349;1.452;14;61
31;43;34457;24821;1.428;14;60
37;43;32377;27851;1.482;14;81
41;43;33623;32057;1.424;13;59
3;47;33757;2153;1.459;14;61
5;47;33353;3547;1.445;14;61
7;47;34687;5153;1.414;13;59
11;47;34519;8069;1.417;14;60
13;47;34549;9551;1.412;13;59
17;47;33613;12149;1.461;14;61
19;47;33863;13687;1.443;14;60
23;47;35393;17317;1.402;14;59
29;47;34747;21433;1.432;13;60
31;47;34871;22993;1.409;14;59
37;47;34729;27337;1.425;14;59
41;47;33773;29453;1.438;14;60
43;47;31253;28591;1.487;14;62
3;53;33623;1901;1.430;14;59
5;53;34469;3229;1.430;13;60
7;53;34883;4603;1.408;14;59
11;53;34511;7159;1.412;13;59
13;53;32587;7963;1.453;14;60
17;53;34297;10993;1.432;13;80
19;53;33599;12043;1.443;14;64
23;53;34337;14897;1.415;14;59
29;53;34877;19081;1.424;14;61
31;53;34913;20411;1.406;13;59
37;53;34429;24029;1.417;13;60
41;53;34499;26683;1.418;14;59
43;53;32261;26171;1.488;14;62
47;53;34253;30367;1.437;14;79
3;59;33503;1699;1.432;14;61
5;59;34781;2939;1.424;14;60
7;59;35531;4211;1.403;14;59
11;59;34487;6427;1.420;14;59
13;59;33563;7393;1.453;14;61
17;59;34019;9791;1.440;14;60
19;59;33967;10937;1.447;14;60
23;59;33637;13109;1.438;14;60
29;59;34487;16943;1.424;14;59
31;59;32687;17167;1.480;14;61
37;59;35353;22159;1.404;14;59
41;59;34499;23971;1.431;14;60
43;59;34039;24799;1.445;14;60
47;59;32027;25471;1.499;14;62
53;59;34019;30557;1.449;14;61
3;61;35059;1723;1.418;14;60
5;61;34351;2803;1.416;13;60
7;61;35099;4021;1.412;14;59
11;61;34019;6133;1.442;14;60
13;61;35023;7459;1.406;14;88
17;61;35201;9803;1.414;14;61
19;61;34679;10799;1.425;14;101
23;61;34039;12829;1.441;13;60
29;61;33871;16097;1.446;14;60
31;61;34147;17351;1.427;14;61
37;61;34583;20963;1.412;14;59
41;61;32999;22171;1.452;14;62
43;61;33857;23857;1.431;14;98
47;61;34897;26881;1.431;14;60
53;61;33647;29231;1.434;14;60
59;61;32999;31907;1.454;14;60
3;67;32999;1471;1.455;14;61
5;67;35171;2621;1.403;14;59
7;67;33851;3533;1.463;14;61
11;67;34607;5669;1.437;14;60
13;67;35081;6803;1.416;14;61
17;67;33941;8609;1.417;14;60
19;67;34673;9829;1.427;14;60
23;67;35099;12043;1.415;14;60
29;67;33679;14563;1.452;14;61
31;67;34283;15859;1.437;14;60
37;67;32917;18169;1.460;13;61
41;67;33461;20443;1.441;14;61
43;67;34313;22013;1.426;14;60
47;67;33347;23371;1.452;14;61
53;67;33773;26713;1.434;14;60
59;67;35911;31607;1.395;14;58
61;67;34157;31091;1.431;14;63
3;71;34483;1453;1.423;14;59
5;71;34537;2423;1.428;14;59
7;71;33637;3313;1.428;13;60
11;71;32507;5023;1.465;14;79
13;71;35753;6529;1.403;14;59
17;71;33347;7963;1.444;14;61
19;71;35141;9397;1.410;14;59
23;71;32621;10559;1.475;14;61
29;71;33637;13729;1.429;14;60
31;71;33599;14657;1.443;14;60
37;71;34361;17903;1.396;14;59
41;71;33757;19489;1.435;14;61
43;71;34583;20939;1.413;14;59
47;71;34589;22877;1.441;14;60
53;71;35353;26387;1.418;14;59
59;71;35323;29347;1.406;14;59
61;71;35597;30577;1.401;14;59
67;71;34537;32587;1.425;14;59
3;73;34613;1409;1.418;14;59
5;73;32969;2251;1.453;14;62
7;73;33049;3167;1.448;14;61
11;73;33863;5101;1.435;14;60
13;73;34439;6131;1.456;14;60
17;73;33629;7829;1.455;14;61
19;73;34739;9029;1.421;14;60
23;73;33071;10399;1.469;14;61
29;73;33359;13249;1.460;14;61
31;73;33767;14327;1.422;14;59
37;73;32939;16693;1.490;14;62
41;73;33739;18947;1.438;14;60
43;73;33937;19979;1.432;14;61
47;73;33767;21739;1.422;14;59
53;73;33359;24203;1.435;14;60
59;73;34361;27767;1.401;13;59
61;73;33827;28229;1.443;14;60
67;73;34421;31583;1.423;14;71
71;73;33053;32143;1.447;14;60
3;79;35027;1327;1.410;14;60
5;79;34283;2161;1.432;14;60
7;79;34439;3049;1.432;14;60
11;79;34679;4817;1.416;14;59
13;79;34667;5701;1.405;14;59
17;79;33637;7237;1.428;14;60
19;79;34469;8287;1.417;14;60
23;79;34439;10009;1.433;14;60
29;79;33427;12269;1.448;13;61
31;79;33893;13297;1.445;14;61
37;79;33863;15823;1.439;14;60
41;79;32983;17107;1.450;14;60
43;79;34613;18803;1.431;14;60
47;79;33457;19891;1.457;14;61
53;79;33961;22777;1.435;14;61
59;79;32983;24631;1.465;14;60
61;79;34337;26501;1.428;14;60
67;79;33547;28447;1.458;14;61
71;79;32653;29339;1.473;14;61
73;79;34679;32029;1.429;14;64
3;83;35407;1277;1.405;14;59
5;83;32797;1973;1.451;14;60
7;83;33049;2777;1.443;14;61
11;83;33889;4483;1.431;14;60
13;83;35159;5503;1.409;14;59
17;83;34949;7151;1.412;14;59
19;83;32957;7541;1.467;14;61
23;83;32569;9013;1.470;14;61
29;83;33287;11621;1.474;14;61
31;83;33911;12659;1.448;13;60
37;83;33487;14923;1.456;14;62
41;83;33587;16573;1.438;13;60
43;83;34019;17623;1.435;14;60
47;83;31769;17987;1.483;14;62
53;83;33049;21101;1.451;14;61
59;83;32369;23003;1.465;14;61
61;83;32653;23993;1.469;14;61
67;83;33599;27109;1.437;14;61
71;83;33713;28837;1.452;14;61
73;83;33703;29641;1.454;14;61
79;83;34583;32911;1.417;14;59
3;89;34147;1129;1.415;13;60
5;89;32797;1831;1.461;14;61
7;89;33679;2647;1.443;14;73
11;89;34543;4261;1.427;13;60
13;89;34603;5051;1.419;14;60
17;89;34061;6491;1.444;14;60
19;89;34457;7351;1.422;14;79
23;89;33529;8663;1.450;14;61
29;89;34283;11161;1.431;14;60
31;89;35027;12197;1.411;13;59
37;89;34259;14221;1.403;14;59
41;89;33997;15649;1.434;14;60
43;89;33911;16127;1.445;14;60
47;89;34949;18451;1.419;14;59
53;89;34367;20443;1.434;14;60
59;89;33791;22397;1.430;14;59
61;89;34961;23957;1.404;14;59
67;89;33863;25471;1.433;13;60
71;89;35149;28031;1.414;14;79
73;89;33113;27143;1.447;14;60
79;89;32909;29209;1.458;14;61
83;89;33617;31337;1.400;14;59
3;97;34211;1051;1.448;14;60
5;97;34807;1789;1.430;14;60
7;97;33547;2417;1.446;14;60
11;97;35171;3967;1.407;14;89
13;97;32479;4349;1.474;14;61
17;97;34319;6011;1.444;14;60
19;97;32381;6337;1.491;14;64
23;97;33617;7963;1.421;14;59
29;97;33767;10093;1.423;14;59
31;97;33641;10739;1.447;14;60
37;97;34589;13187;1.425;13;60
41;97;34171;14437;1.451;14;60
43;97;31973;14159;1.484;14;62
47;97;33911;16127;1.445;14;61
53;97;34031;18593;1.448;14;80
59;97;32579;19813;1.457;14;61
61;97;34421;21617;1.417;13;60
67;97;33739;23297;1.448;14;60
71;97;33739;24691;1.435;14;60
73;97;33863;25471;1.433;13;60
79;97;34381;27997;1.419;14;59
83;97;33967;29063;1.446;14;60
89;97;33521;30727;1.441;14;60
第 1 列和第 2 列用于计算 rehash 值和索引大小之间的粗略关系。接下来的两个是第一个索引大小/重新散列因子组合,平均不到 1.5 次搜索,最坏的情况是 14 次搜索。然后是平均和最坏情况。最后,最后一列是每次查找的平均时钟周期数。它没有考虑读取时间戳寄存器所需的时间。
最佳常量的实际内存空间(# of indeces = 31253 和 rehash factor = 28591)比我最初指出的要多(16000*2*8 + 1,25*16000*2 => 296000 字节)。实际大小为 16000*2*8+31253*2 => 318506。
最快的组合是 11/31 的近似比率,索引大小为 35897,rehash 值为 12721。这将平均为 1.389(1 个初始散列 + 0.389 个 rehash),最大值为 14(1+13)。
________ 编辑________
我删除了“goto found;” 在 main() 中显示所有组合,它表明可以有更好的性能,当然是以更大的索引大小为代价的。例如,57667 和 33797 的组合产生 1.192 的平均值和 6 的最大重新哈希。44543 和 23399 的组合产生 1.249 的平均值和 10 最大的重新哈希(与索引表相比,它节省了 (57667-44543)*2=26468 字节57667/33797)。
与变量相比,具有硬编码哈希索引大小和重新哈希因子的专用函数将在 60-70% 的时间内执行。这可能是由于编译器(gcc 64 位)用乘法代替了模,而不必从内存位置获取值,因为它们将被编码为立即值。
________ 编辑________
关于缓存的主题,我看到了两个问题。
第一个是数据缓存,我认为这是不可能的,因为查找只是某个较大过程中的一小步,并且您冒着表数据的缓存行开始在较小或(可能)较大程度上失效的风险-如果不是完全 - 通过更大过程的其他步骤中的其他数据访问。即,整个过程中执行的代码和访问的数据越多,任何相关的查找数据将保留在缓存中的可能性就越小(这可能与 OP 的情况有关,也可能不相关)。要使用(我的)散列查找条目,每次需要执行的比较都会遇到两次缓存未命中(一个加载索引的正确部分,另一个加载包含条目本身的区域)。在第一次尝试中找到一个条目将导致两次未命中,第二次尝试四次,以此类推。在我的示例中,每次查找 60 个时钟周期的平均成本意味着该表可能完全驻留在 L2 缓存中,并且在大多数情况下 L1 不必去那里。我的 x86-64 CPU 具有 L1-3,RAM 等待状态大约为 4、10、40 和 100,这对我来说表明 RAM 完全被排除在外,而大部分是 L3。
第二个是代码缓存,如果它很小、紧凑、内联并且控制传输(跳转和调用)很少,它将产生更显着的影响。我的哈希例程可能完全驻留在 L1 代码缓存中。对于更正常的情况,代码缓存行加载的数量越少,加载速度就越快。