4

假设我想用二次(正交)多项式拟合线性回归模型,然后预测响应。这是第一个模型(m1)的代码

x=1:100
y=-2+3*x-5*x^2+rnorm(100)
m1=lm(y~poly(x,2))
prd.1=predict(m1,newdata=data.frame(x=105:110))

现在让我们尝试相同的模型,但不使用 $poly(x,2)$,我将使用它的列,例如:

m2=lm(y~poly(x,2)[,1]+poly(x,2)[,2])
prd.2=predict(m2,newdata=data.frame(x=105:110))

让我们看一下 m1 和 m2 的摘要。

> summary(m1)

Call:
lm(formula = y ~ poly(x, 2))

Residuals:
     Min       1Q   Median       3Q      Max 
-2.50347 -0.48752 -0.07085  0.53624  2.96516 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.677e+04  9.912e-02 -169168   <2e-16 ***
poly(x, 2)1 -1.449e+05  9.912e-01 -146195   <2e-16 ***
poly(x, 2)2 -3.726e+04  9.912e-01  -37588   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.9912 on 97 degrees of freedom
Multiple R-squared:     1,      Adjusted R-squared:     1 
F-statistic: 1.139e+10 on 2 and 97 DF,  p-value: < 2.2e-16 

> summary(m2)

Call:
lm(formula = y ~ poly(x, 2)[, 1] + poly(x, 2)[, 2])

Residuals:
     Min       1Q   Median       3Q      Max 
-2.50347 -0.48752 -0.07085  0.53624  2.96516 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -1.677e+04  9.912e-02 -169168   <2e-16 ***
poly(x, 2)[, 1] -1.449e+05  9.912e-01 -146195   <2e-16 ***
poly(x, 2)[, 2] -3.726e+04  9.912e-01  -37588   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.9912 on 97 degrees of freedom
Multiple R-squared:     1,      Adjusted R-squared:     1 
F-statistic: 1.139e+10 on 2 and 97 DF,  p-value: < 2.2e-16 

所以m1和m2基本相同。现在让我们看看预测 prd.1 和 prd.2

> prd.1
        1         2         3         4         5         6 
-54811.60 -55863.58 -56925.56 -57997.54 -59079.52 -60171.50 

> prd.2
         1          2          3          4          5          6 
  49505.92   39256.72   16812.28  -17827.42  -64662.35 -123692.53 

Q1:为什么prd.2与prd.1有很大不同?

Q2:如何使用模型m2获得prd.1?

4

1 回答 1

8

m1是这样做的正确方法。m2正在进入一个痛苦的世界……

要从 进行预测m2,模型需要知道它已拟合到一组正交基函数,以便它对外推的新数据值使用相同的基函数。比较:poly(1:10,2)[,2]with poly(1:12,2)[,2]- 前十个值不一样。如果您明确地拟合模型,poly(x,2)那么就会predict理解所有这些并做正确的事情。

您需要做的是确保使用与最初创建模型相同的一组基函数来转换您的预测位置。您可以使用predict.poly它(注意我调用我的解释变量x1x2以便轻松匹配名称):

px = poly(x,2)
x1 = px[,1]
x2 = px[,2]

m3 = lm(y~x1+x2)

newx = 90:110
pnew = predict(px,newx) # px is the previous poly object, so this calls predict.poly

prd.3 = predict(m3, newdata=data.frame(x1=pnew[,1],x2=pnew[,2]))
于 2012-12-15T23:08:49.770 回答