1

为了让 Cassandra 插入更快,我正在使用多线程,它工作正常,但是如果我添加更多线程它没有任何区别,我认为我不会产生更多连接,我想我可能应该使用池。 execute(f, *args, **kwargs) 但我不知道如何使用它,文档很少。到目前为止,这是我的代码..

import connect_to_ks_bp
from connect_to_ks_bp import ks_refs
import time
import pycassa
from datetime import datetime 
import json
import threadpool
pool = threadpool.ThreadPool(20)
count = 1
bench = open("benchCassp20_100000.txt", "w")

def process_tasks(lines):

    #let threadpool format your requests into a list
    requests = threadpool.makeRequests(insert_into_cfs, lines)

    #insert the requests into the threadpool
    for req in requests:
        pool.putRequest(req) 

    pool.wait()

def read(file):
    """read data from json and insert into keyspace"""
    json_data=open(file)
    lines = []
    for line in json_data:
        lines.append(line)
    print len(lines)
    process_tasks(lines)


def insert_into_cfs(line):
    global count
    count +=1
    if count > 5000:
            bench.write(str(datetime.now())+"\n")
            count = 1
    #print count
    #print kspool.checkedout()
    """
    user_tweet_cf = pycassa.ColumnFamily(kspool, 'UserTweet')
    user_name_cf = pycassa.ColumnFamily(kspool, 'UserName')
    tweet_cf = pycassa.ColumnFamily(kspool, 'Tweet')
    user_follower_cf = pycassa.ColumnFamily(kspool, 'UserFollower')
    """
    tweet_data = json.loads(line)
    """Format the tweet time as an epoch seconds int value"""
    tweet_time = time.strptime(tweet_data['created_at'],"%a, %d %b %Y %H:%M:%S +0000")
    tweet_time  = int(time.mktime(tweet_time))

    new_user_tweet(tweet_data['from_user_id'],tweet_time,tweet_data['id'])
    new_user_name(tweet_data['from_user_id'],tweet_data['from_user_name'])
    new_tweet(tweet_data['id'],tweet_data['text'],tweet_data['to_user_id'])

    if tweet_data['to_user_id'] != 0:
        new_user_follower(tweet_data['from_user_id'],tweet_data['to_user_id'])


""""4 functions below carry out the inserts into specific column families"""        
def new_user_tweet(from_user_id,tweet_time,id):
    ks_refs.user_tweet_cf.insert(from_user_id,{(tweet_time): id})

def new_user_name(from_user_id,user_name):
    ks_refs.user_name_cf.insert(from_user_id,{'username': user_name})

def new_tweet(id,text,to_user_id):
    ks_refs.tweet_cf.insert(id,{
    'text': text
    ,'to_user_id': to_user_id
    })  

def new_user_follower(from_user_id,to_user_id):
    ks_refs.user_follower_cf.insert(from_user_id,{to_user_id: 0})   

    read('tweets.json')
if __name__ == '__main__':

这只是另一个文件..

import pycassa
from pycassa.pool import ConnectionPool
from pycassa.columnfamily import ColumnFamily

"""This is a static class I set up to hold the global database connection stuff,
I only want to connect once and then the various insert functions will use these fields a lot"""
class ks_refs():
    pool = ConnectionPool('TweetsKS',use_threadlocal = True,max_overflow = -1)

    @classmethod
    def cf_connect(cls, column_family):
        cf = pycassa.ColumnFamily(cls.pool, column_family)
        return cf

ks_refs.user_name_cfo = ks_refs.cf_connect('UserName')
ks_refs.user_tweet_cfo = ks_refs.cf_connect('UserTweet')
ks_refs.tweet_cfo = ks_refs.cf_connect('Tweet')
ks_refs.user_follower_cfo = ks_refs.cf_connect('UserFollower')

#trying out a batch mutator whihc is supposed to increase performance
ks_refs.user_name_cf = ks_refs.user_name_cfo.batch(queue_size=10000)
ks_refs.user_tweet_cf = ks_refs.user_tweet_cfo.batch(queue_size=10000)
ks_refs.tweet_cf = ks_refs.tweet_cfo.batch(queue_size=10000)
ks_refs.user_follower_cf = ks_refs.user_follower_cfo.batch(queue_size=10000)
4

1 回答 1

1

一些想法:

  • 10,000 的批量太大了。试试 100。
  • 使您的 ConnectionPool 大小至少与使用该pool_size参数的线程数一样大。默认值为 5。仅当活动线程数可能随时间变化时才应使用池溢出,而不应在线程数固定时使用。原因是它会导致很多不必要的新连接的打开和关闭,这是一个相当昂贵的过程。

解决这些问题后,请查看以下内容:

  • 我不熟悉您正在使用的线程池库。确保如果您将 Cassandra 的插入从图片中移除,当您增加线程数时,您会看到性能的提高
  • 由于 GIL,Python 本身对可用线程的数量有限制。它通常不应该在 20 时达到最大值,但如果你正在做一些 CPU 密集型或需要大量 Python 解释的事情,它可能会。我在前一点中描述的测试也将涵盖这一点。在这种情况下,您可能应该考虑使用该multiprocessing模块,但您需要更改一些代码来处理它(即,不在进程之间共享 ConnectionPools、CF 或几乎没有其他任何东西)。
于 2012-12-31T21:09:51.910 回答