我有一个作业到期,但我无法理解该作业真正要求我做什么,或者如何去做。我知道复数是什么,但我不明白 C++ 和 Python 版本的以下操作应该做什么:
op: Complex × Complex → Complex
op: Complex × double → Complex
op: double × Complex → Complex
双倍的?我不明白 double 是从哪里来的。python版本也应该将复合体转换为字符串,我还是不明白它在问什么。是说将复数(整数?)字面转换为字符串数据类型吗?请让我知道您是否可以尝试帮助我理解作业的要求,以便我可以尝试对其进行编程。
复数类
用 C++、Java 和 Python 设计一个表示复数并支持加法、减法、乘法和除法等重要运算的类。对于 C++ 和 Python 版本,您需要为每个操作实现以下函数:
op: Complex × Complex → Complex op: Complex × double → Complex op: double × Complex → Complex
其中 op 是 +、-、* 或 / 之一。此外,您将需要重载流插入运算符 << 以打印此类型的对象。必须定义构造函数并重载赋值运算符以允许从双精度数到复杂的隐式转换。还应包括您认为合适的任何其他方法。你的课程越完整越好。
Java 版本将没有那么多方法,因为 Java 不允许运算符重载或友元函数。同样,Java 类越完整越好。覆盖 toString() 方法。
Python 版本还应该包含用于从复合体转换为字符串的函数。
该项目所需的文件是:包含复杂类声明的 complex.h 文件,包含复杂类中声明的方法和函数的实现的 complex.cc 文件,实例化复数的 main.cc 和测试所有方法和函数、一个作为 Java 实现的 Complex.java 文件,以及一个实例化和测试 Complex 类的所有方法的 Main.java 文件。所需的 python 文件是一个 complex.py 文件。
他为我们提供了以下代码:
/*
*
* Java version
*
*/
/* Main.java */
public class Main {
public static void main(String[] args) {
Rational a = new Rational(1, 2);
Rational b = new Rational(2, 3);
int i = 5;
System.out.println(a + " + " + b + " = " + a.add(b));
System.out.println(a + " - " + b + " = " + a.sub(b));
System.out.println(a + " * " + b + " = " + a.mul(b));
System.out.println(a + " / " + b + " = " + a.div(b));
System.out.println(a + " + " + i + " = " + a.add(i));
System.out.println(a + " - " + i + " = " + a.sub(i));
System.out.println(a + " * " + i + " = " + a.mul(i));
System.out.println(a + " / " + i + " = " + a.div(i));
}
}
/* Rational.java */
public class Rational {
public Rational() {
this(0);
}
public Rational(int num) {
this(num, 1);
}
public Rational(int num, int den) {
this.num = num;
this.den = den;
}
public Rational add(Rational o) {
return new Rational(num * o.den + o.num * den, den * o.den);
}
public Rational add(int n) {
return new Rational(num + n * den, den);
}
public Rational div(Rational o) {
return new Rational(num * o.den, den * o.num);
}
public Rational div(int n) {
return new Rational(num, den * n);
}
public Rational mul(Rational o) {
return new Rational(num * o.num, den * o.den);
}
public Rational mul(int n) {
return new Rational(num * n, den);
}
public Rational sub(Rational o) {
return new Rational(num * o.den - o.num * den, den * o.den);
}
public Rational sub(int n) {
return new Rational(num - n * den, den);
}
public String toString() {
return "(" + num + " / " + den + ")";
}
private int den;
private int num;
}
/*
*
* C++ version
*
*/
/* rational.h */
#ifndef RATIONAL_H
#define RATIONAL_H
#include <iostream>
using std::ostream;
struct rational {
rational(int = 0, int = 1);
rational operator+(const rational &) const;
rational operator-(const rational &) const;
rational operator*(const rational &) const;
rational operator/(const rational &) const;
rational operator+(int) const;
rational operator-(int) const;
rational operator*(int) const;
rational operator/(int) const;
friend rational operator+(int, const rational &);
friend rational operator-(int, const rational &);
friend rational operator*(int, const rational &);
friend rational operator/(int, const rational &);
friend ostream &operator<<(ostream &, const rational &);
private:
int den;
int num;
};
#endif /* RATIONAL_H */
/* rational.cc */
#include <iostream>
#include "rational.h"
rational::rational(int num, int den) : num(num), den(den) {}
rational rational::operator+(const rational &o) const {
return rational(num * o.den + o.num * den, den * o.den);
}
rational rational::operator+(int n) const {
return rational(num + n * den, den);
}
rational rational::operator-(const rational &o) const {
return rational(num * o.den - o.num * den, den * o.den);
}
rational rational::operator-(int n) const {
return rational(num - n * den, den);
}
rational rational::operator*(const rational &o) const {
return rational(num * o.num, den * o.den);
}
rational rational::operator*(int n) const {
return rational(num * n, den);
}
rational rational::operator/(const rational &o) const {
return rational(num * o.den, den * o.num);
}
rational rational::operator/(int n) const {
return rational(num, den * n);
}
rational operator+(int n, const rational &o) {
return o + n;
}
rational operator-(int n, const rational &o) {
return rational(n) - o;
}
rational operator*(int n, const rational &o) {
return o * n;
}
rational operator/(int n, const rational &o) {
return rational(n) / o;
}
ostream &operator<<(ostream &out, const rational &o) {
out << '(' << o.num << " / " << o.den << ')';
return out;
}
/* main.cc */
#include <iostream>
#include "rational.h"
using std::cout;
using std::endl;
int main(void) {
rational a(1, 2);
rational b(2, 3);
int i = 5;
cout << a << " + " << b << " = " << a + b << endl;
cout << a << " - " << b << " = " << a - b << endl;
cout << a << " * " << b << " = " << a * b << endl;
cout << a << " / " << b << " = " << a / b << endl;
cout << a << " + " << i << " = " << a + i << endl;
cout << a << " - " << i << " = " << a - i << endl;
cout << a << " * " << i << " = " << a * i << endl;
cout << a << " / " << i << " = " << a / i << endl;
cout << i << " + " << a << " = " << i + a << endl;
cout << i << " - " << a << " = " << i - a << endl;
cout << i << " * " << a << " = " << i * a << endl;
cout << i << " / " << a << " = " << i / a << endl;
return 0;
}
#
#
# Python version
#
#
class rational:
def __init__(self, num=0, den=1):
self.num = num
self.den = den
def __add__(self, other):
if isinstance(other, int):
return rational(self.num + other * self.den, self.den)
elif isinstance(other, rational):
return rational(self.num * other.den + other.num * self.den, self.den * other.den)
else:
raise TypeError
def __truediv__(self, other):
if isinstance(other, int):
return rational(self.num, self.den * other)
elif isinstance(other, rational):
return rational(self.num * other.den, self.den * other.num)
else:
raise TypeError
def __float__(self):
return float(self.num) / self.den
def __int__(self):
return self.num / self.den
def __mul__(self, other):
if isinstance(other, int):
return rational(self.num * other, self.den)
elif isinstance(other, rational):
return rational(self.num * other.num, self.den * other.den)
else:
raise TypeError
def __radd__(self, other):
return self + other
def __rtruediv__(self, other):
return rational(other) / self
def __rmul__(self, other):
return self * other
def __rsub__(self, other):
return rational(other) - self
def __str__(self):
return '(' + str(self.num) + ' / ' + str(self.den) + ')'
def __sub__(self, other):
if isinstance(other, int):
return rational(self.num - other * self.den, self.den)
elif isinstance(other, rational):
return rational(self.num * other.den - other.num * self.den, self.den * other.den)
else:
raise TypeError
if __name__ == '__main__':
a = rational(1, 2)
b = rational(2, 3)
i = 5
print('%s + %s = %s' % (a, b, a + b))
print('%s - %s = %s' % (a, b, a - b))
print('%s * %s = %s' % (a, b, a * b))
print('%s / %s = %s' % (a, b, a / b))
print('%s + %i = %s' % (a, i, a + i))
print('%s - %i = %s' % (a, i, a - i))
print('%s * %i = %s' % (a, i, a * i))
print('%s / %i = %s' % (a, i, a / i))
print('%i + %s = %s' % (i, a, i + a))
print('%i - %s = %s' % (i, a, i - a))
print('%i * %s = %s' % (i, a, i * a))
print('%i / %s = %s' % (i, a, i / a))