我有一个程序对数组进行一些操作(小波变换和各种其他复杂性),然后将其与前一个数组及其属性进行比较,输出一个比较两者的图形,最后更新“前一个”数组以包含此信息. 基本上,我的程序开始变得有点长且难以阅读,但我无法真正将其拆分为函数,因为所有函数都在读取并更改相同的变量。每次我想要一个函数来改变它们时,如果不将所有这些变量都定义为全局变量,那就很难了。
然后我在网上找到了这个:
您可能有多个函数使用相同的状态变量,读取或写入它们。您正在传递很多参数。您有嵌套函数,它们必须将它们的参数转发给它们使用的函数。您很想创建一些模块变量来保存状态。
您可以改为上课!一个类的所有方法都可以访问该类的所有实例数据。通过将共享状态存储在类中,您无需将其作为参数传递给方法。
所以我想知道如何使我的程序改用类来编写?如果有帮助,我可以附上我的代码,但它很长,我不想填满论坛!
这是代码:
import os, sys, string, math
from optparse import OptionParser
import numpy as np
import pywt
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from matplotlib.ticker import MaxNLocator
import glob
dir = os.getcwd()
profiles = glob.glob(dir+"/B0740-28/*_edit.FT.ascii")
for x in range(0,len(profiles)):
profiles[x] = profiles[x][28:]
#produce list of profile file names
mode = 'per'
wavelets = ['db12']
levels = range(3,4)
starts = []
fig = 1
ix = 0 #profile index
changes = np.zeros(len(profiles))
#array to record shape changes
for num_levels in levels:
for wavelet in wavelets:
for profile in profiles:
prof_name = profile.partition('.')[0]
#remove file extension
pfile=open(dir+'/B0740-28/'+profile)
data = []
for line in pfile:
data.append(float(line))
data = np.array(data)
end = len(data)
data = np.array(data)/max(data)
#get pulse profile and normalise
#ignore first 2 lines
wav_name = wavelet.partition('.')[0]
w = pywt.Wavelet(wavelet)
useful = pywt.dwt_max_level(end,w)
#find max level of decomposition
coeffs = pywt.wavedec(data,wavelet,mode,level=num_levels)
#create wavelet coefficients: cAn, cDn, cD(n-1)... cD1
lowpass = pywt.upcoef('a',coeffs[0],wavelet,level=num_levels,take=end)
highpass = np.zeros(end)
for x in range(1,(num_levels+1)):
highpass += pywt.upcoef('d',coeffs[len(coeffs)-x],wavelet,\
level=x,take=end)
#reverse transform by upcoef
#define highpass and lowpass components
for n in range(0,len(data)):
if float(data[n]) > 0.4:
value = n
starts.append(value)
break
if profile != profiles[0]:
offset = starts[0]- value
data = np.roll(data,offset)
lowpass = np.roll(lowpass,offset)
highpass = np.roll(highpass,offset)
#adjust profiles so that they line up
if profile == profiles[0]:
data_prev = 0
lowpass_prev = 0
highpass_prev = 0
mxm = data.argmax()
diff_low = lowpass - lowpass_prev
diff_high = highpass - highpass_prev
if max(diff_low) >= 0.15 or min(diff_low) <= -0.15:
changes[ix] = 1
else: changes[ix] = 0
#significant change?
def doPlotting(name,yaxis):
plt.plot(name)
plt.xlim([mxm-80,mxm+100])
plt.ylabel(yaxis)
plt.gca().yaxis.set_major_locator(MaxNLocator(nbins=4))
figure = plt.figure(fig)
figure.subplots_adjust(hspace =.5)
plt.suptitle('Comparison of Consecutive Profiles')
plt.subplot(411); plt.plot(data_prev); \
doPlotting(data,'Data'); plt.ylim(ymax=1.1)
plt.subplot(412); plt.plot(lowpass_prev); \
doPlotting(lowpass,'Lowpass'); plt.ylim(ymax=1.1)
plt.subplot(413); plt.plot(highpass_prev); doPlotting(highpass,'Highpass')
plt.subplot(414); doPlotting(diff_low,'Lowpass\nChange')
plotname = 'differences_'+str(ix+1)+'_'+wav_name+'_'+str(num_levels)
plt.savefig(dir+'/B0740-28/Plots/'+plotname)
#creates plots of two most recent profiles + their decomposition
fig += 1
ix += 1
#clears the figure content
#increase array index
data_prev = data
lowpass_prev = lowpass
highpass_prev = highpass
#reassigns 'previous profile' values
figure = plt.figure(fig)
plt.plot(changes)
plt.title('Lowpass Changes')
plt.xlabel('Profile Number')
plt.ylabel('Change > Threshold?')
plt.ylim(-0.25,1.25)
plt.xlim(0,48)
plt.savefig(dir+'/B0740-28/Plots/changes')
#Save lowpass changes plot