I've tested with 10000 remote actors created from some main
context by a root
actor, same scheme as in prod module a single actor was created. MBP 2.5GHz x2:
- in main: main ? root // main asks root to create an actor
- in main: actorOf(child) // create a child
- in root: watch(child) // watch lifecycle messages
- in root: root ? child // wait for response (connection check)
- in child: child ! root // response (connection ok)
- in root: root ! main // notify created
Code:
def start(userName: String) = {
logger.error("HELLOOOOOOOO ")
val n: Int = 10000
var t0, t1: Long = 0
t0 = System.nanoTime
for (i <- 0 to n) {
val msg = StartClient(userName + i)
Await.result(rootActor ? msg, timeout.duration).asInstanceOf[ClientStarted] match {
case succ @ ClientStarted(userName) =>
// logger.info("[C][SUCC] Client started: " + succ)
case _ =>
logger.error("Terminated on waiting for response from " + i + "-th actor")
throw new RuntimeException("[C][FAIL] Could not start client: " + msg)
}
}
t1 = System.nanoTime
logger.error("Starting of a single actor of " + n + ": " + ((t1 - t0) / 1000000.0 / n.toDouble) + " ms")
}
The result:
Starting of a single actor of 10000: 0.3642917 ms
There was a message stating that "Slf4jEventHandler started" between "HELOOOOOOOO" and "Starting of a single", so the experiment seems even more realistic (?)
Dispatchers was a default (a PinnedDispatcher starting a new thread each and every time), and it seemed like all that stuff is the same as Thread.start()
was, for a long long time since Java 1 - 500K-1M cycles or so ^)
That's why I've changed all code inside loop, to a new java.lang.Thread().start()
The result:
Starting of a single actor of 10000: 0.1355219 ms