5

A*B假设我在 GPU 上有一个维度为的矩阵,其中B(列数)是假设 C 样式的前导维度。CUDA(或 cublas)中是否有任何方法可以将此矩阵转置为 FORTRAN 样式,其中A(行数)成为前导维度?

如果可以在传输过程中进行转置,host->device同时保持原始数据不变,那就更好了。

4

4 回答 4

12

如标题中所要求的,要转置设备行主矩阵 A[m][n],可以这样做:

    float* clone = ...;//copy content of A to clone
    float const alpha(1.0);
    float const beta(0.0);
    cublasHandle_t handle;
    cublasCreate(&handle);
    cublasSgeam( handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, &alpha, clone, n, &beta, clone, m, A, m );
    cublasDestroy(handle);

并且,将两个行优先矩阵 A[m][k] B[k][n] 相乘,C=A*B

    cublasSgemm( handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, &alpha, B, n, A, k, &beta, C, n );

其中 C 也是一个行优先矩阵。

于 2013-03-20T17:21:22.213 回答
4

CUDA SDK 包含一个矩阵转置,您可以在此处查看有关如何实现的代码示例,从简单的实现到优化的版本。

例如:

天真的转置

__global__ void transposeNaive(float *odata, float* idata,
int width, int height, int nreps)
{
    int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;
    int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;
    int index_in = xIndex + width * yIndex;
    int index_out = yIndex + height * xIndex;

    for (int r=0; r < nreps; r++)
    {
        for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS)
        {
          odata[index_out+i] = idata[index_in+i*width];
        }
    }
}

就像 talonmies 指出的那样,您可以在 cublas 矩阵运算中指定是否要转置矩阵,例如:对于 cublasDgemm() where C = a * op(A) * op(B) + b * C,假设您想将 A 操作为转置 (A^T),在参数上您可以指定它是 ('N' normal or 'T' transposed)

于 2012-12-09T03:45:24.610 回答
4

与 CUDA 5 工具包捆绑的 CUBLAS 版本包含可用于转置矩阵的类似 BLAS 的方法 (cublasgeam)。它记录在这里

于 2012-12-13T07:39:04.267 回答
0

这是一个工作示例:

#include "cublas_v2.h"
#include <vector>
#include <iostream>
using std::cout;

void print_matrix(float *data, int rows, int cols) {
    cout << "[";
    for( int row=0; row < rows; row++) {
        cout << "[";
        for( int col=0; col < cols; col++) {
            cout << data[row*cols+col] << ",";
        }
        cout << "]";
    }
    cout << "]";
}

int main() {
    // allocate host vector
    std::vector<float> h_a = {1,2,3,4,5,6,7,8,9,10};
    int nbytes=h_a.size()*sizeof(*h_a.data());
    std::vector<float> h_b(h_a.size());

    // define the number or rows and the number of columns
    int m=2,n=5;

    // allocate device vectors
    float *d_a, *d_b;
    cudaMalloc(&d_a, nbytes);
    cudaMalloc(&d_b, nbytes);

    // copy host vector to device
    cudaMemcpy(d_a,h_a.data(), nbytes, cudaMemcpyHostToDevice);

    // perform a transpose
    {

        float alpha=1;
        float *A=d_a;
        int lda=n;

        float beta=0;
        float *B=NULL;
        int ldb=n;

        float *C=d_b;
        int ldc=m;

        cublasHandle_t handle;
        cublasCreate(&handle);
        cublasStatus_t success=cublasSgeam( handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, &alpha, A, lda, &beta, B, ldb, C, ldc);
        if ( success != CUBLAS_STATUS_SUCCESS)
            cout << "\33[31mError: " << success << "\33[0m\n";
        cublasDestroy(handle);
    }

    // copy back to host
    cudaMemcpy(h_b.data(),d_b,nbytes,cudaMemcpyDeviceToHost);

    cout << "origional:  ";
    print_matrix(h_a.data(),m,n);
    cout << "\n";

    cout << "transposed: ";
    print_matrix(h_b.data(),n,m);
    cout << "\n";

    cudaFree(d_a);
    cudaFree(d_b);
    return 0;
}
于 2021-08-13T23:56:53.497 回答