6

我想为树木育种项目创建一个线性祖先列表。父母是雄性/雌性对,不能有血缘关系(没有近亲繁殖),因此跟踪和可视化这些谱系很重要......

下面是使用 Postgresql 9.1 的测试表/数据:

DROP TABLE if exists family CASCADE;
DROP TABLE if exists plant CASCADE;

CREATE TABLE family (   
  id serial,
  family_key VARCHAR(20) UNIQUE,
  female_plant_id INTEGER NOT NULL DEFAULT 1,  
  male_plant_id INTEGER NOT NULL DEFAULT 1,   
  filial_n INTEGER NOT NULL DEFAULT -1,  -- eg 0,1,2...  Which would represent None, F1, F2... 
  CONSTRAINT family_pk PRIMARY KEY (id)
);

CREATE TABLE plant ( 
  id serial,
  plant_key VARCHAR(20) UNIQUE,
  id_family INTEGER NOT NULL,  
  CONSTRAINT plant_pk PRIMARY KEY (id),
  CONSTRAINT plant_id_family_fk FOREIGN KEY(id_family) REFERENCES family(id) -- temp may need to remove constraint...
);

-- FAMILY Table DATA:
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (1,'NA',1,1,1); -- Default place holder record
-- Root level Alba families
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (2,'family1AA',2,3,1);
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (3,'family2AA',4,5,1);
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (4,'family3AA',6,7,1);
-- F2 Hybrid Families
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (5,'family4AE',8,11,0); 
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (6,'family5AG',9,12,0);
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (7,'family6AT',10,13,0); 
-- F3 Double Hybrid family:
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (9,'family7AEAG',14,15,0);
-- F3 Tri-hybrid backcross family:
insert into family (id, family_key, female_plant_id, male_plant_id, filial_n) VALUES (10,'family8AEAGAT',17,16,0);

-- PLANT Table DATA:
-- Root level Alba Parents: 
insert into plant (id, plant_key,  id_family) VALUES (1,'NA',1);      -- Default place holder record
insert into plant (id, plant_key,  id_family) VALUES (2,'female1A',1); 
insert into plant (id, plant_key,  id_family) VALUES (3,'male1A',1);
insert into plant (id, plant_key,  id_family) VALUES (4,'female2A',1);
insert into plant (id, plant_key,  id_family) VALUES (5,'male2A',1);
insert into plant (id, plant_key,  id_family) VALUES (6,'female3A',1); 
insert into plant (id, plant_key,  id_family) VALUES (7,'male3A',1);
-- Female Alba progeny:
insert into plant (id, plant_key,  id_family) VALUES (8,'female4A',2);
insert into plant (id, plant_key,  id_family) VALUES (9,'female5A',3);
insert into plant (id, plant_key,  id_family) VALUES (10,'female6A',4);
-- Male Aspen Root level parents:
insert into plant (id, plant_key,  id_family) VALUES (11,'male1E',1); 
insert into plant (id, plant_key,  id_family) VALUES (12,'male1G',1);  
insert into plant (id, plant_key,  id_family) VALUES (13,'female1T',1);
-- F1 Hybrid progeny:
insert into plant (id, plant_key,  id_family) VALUES (14,'female1AE',5); 
insert into plant (id, plant_key,  id_family) VALUES (15,'male1AG',6);  
insert into plant (id, plant_key,  id_family) VALUES (16,'male1AT',7);
-- Hybrid progeny
insert into plant (id, plant_key,  id_family) VALUES (17,'female1AEAG',9);
-- Tri-hybrid backcross progeny:
insert into plant (id, plant_key,  id_family) VALUES (18,'female1AEAGAT',10);
insert into plant (id, plant_key,  id_family) VALUES (19,'female2AEAGAT',10);

下面是我从Postgres WITH Queries文档中得出的递归查询:

WITH RECURSIVE search_tree(
      family_key
    , female_plant
    , male_plant
    , depth
    , path
    , cycle
) AS (
    SELECT 
          f.family_key
        , pf.plant_key
        , pm.plant_key
        , 1
        , ARRAY[ROW(pf.plant_key, pm.plant_key)]
        , false
    FROM 
          family f
        , plant pf
        , plant pm
    WHERE 
        f.female_plant_id = pf.id
        AND f.male_plant_id = pm.id
        AND f.filial_n = 1 -- Include only F1 families (root level)
        AND f.id <> 1      -- omit the default first family record

    UNION ALL

    SELECT  
          f.family_key
        , pf.plant_key
        , pm.plant_key
        , st.depth + 1
        , path || ROW(pf.plant_key, pm.plant_key)
        , ROW(pf.plant_key, pm.plant_key) = ANY(path)
    FROM 
          family f
        , plant pf
        , plant pm
        , search_tree st
    WHERE 
        f.female_plant_id = pf.id
        AND f.male_plant_id = pm.id
        AND f.family_key = st.family_key
        AND pf.plant_key = st.female_plant
        AND pm.plant_key = st.male_plant
        AND f.filial_n <> 1  -- Include only non-F1 families (non-root levels)
        AND NOT cycle
)
SELECT * FROM search_tree;

以下是所需的输出:

F1 family1AA=(female1A x male1A) > F2 family4AE=(female4A x male1E) > F3 family7AEAG=(female1AE x male1AG) > F4 family8AEAGAT=(female1AEAG x male1AT)  
F1 family2AA=(female2A x male2A) > F2 family5AG=(female5A x male1G) > F3 family7AEAG=(female1AE x male1AG) > F4 family8AEAGAT=(female1AEAG x male1AT) 
F1 family3AA=(female3A x male3A) > F2 family6AT=(female6A x female1T) > F3 family8AEAGAT=(female1AEAG x male1AT) 

上面的递归查询显示 3 行具有适当的 F1 父级,但路径不显示下游族/父级。我会很感激帮助使递归输出类似于上面列出的所需输出。

4

1 回答 1

5

我已经根据我的理解调整了查询​​,不一定是需要的:-)

查询从定义的三个给定族开始,f.id != 1 AND f.filial_n = 1并递归地扩展可用的子级。

在什么情况下只选择最后三场比赛是我无法理解的。也许对于每个起始家庭来说,最长的祖先链?

WITH RECURSIVE expanded_family AS (
    SELECT
        f.id,
        f.family_key,
        pf.id           pd_id,
        pf.plant_key    pf_key,
        pf.id_family    pf_family,
        pm.id           pm_id,
        pm.plant_key    pm_key,
        pm.id_family    pm_family,
        f.filial_n
    FROM family f
        JOIN plant pf ON f.female_plant_id = pf.id
        JOIN plant pm ON f.male_plant_id = pm.id
),
search_tree AS (
    SELECT
        f.*,
        1 depth,
        ARRAY[f.family_key::text] path
    FROM expanded_family f
    WHERE
        f.id != 1
        AND f.filial_n = 1
    UNION ALL
    SELECT
        f.*,
        depth + 1,
        path || f.family_key::text
    FROM search_tree st
        JOIN expanded_family f
            ON f.pf_family = st.id
            OR f.pm_family = st.id
    WHERE
        f.id <> 1
)
SELECT
    family_key,
    depth,
    path
FROM search_tree;

结果是:

  family_key   | depth |                      path                       
---------------+-------+-------------------------------------------------
 family1AA     |     1 | {family1AA}
 family2AA     |     1 | {family2AA}
 family3AA     |     1 | {family3AA}
 family4AE     |     2 | {family1AA,family4AE}
 family5AG     |     2 | {family2AA,family5AG}
 family6AT     |     2 | {family3AA,family6AT}
 family7AEAG   |     3 | {family1AA,family4AE,family7AEAG}
 family7AEAG   |     3 | {family2AA,family5AG,family7AEAG}
 family8AEAGAT |     3 | {family3AA,family6AT,family8AEAGAT}
 family8AEAGAT |     4 | {family1AA,family4AE,family7AEAG,family8AEAGAT}
 family8AEAGAT |     4 | {family2AA,family5AG,family7AEAG,family8AEAGAT}

技术资料:

  • 我已经删除了cycle这些东西,因为对于干净的数据,它不应该是必要的(恕我直言)。

  • expanded_family如果出现一些奇怪的性能问题,可以内联,但现在它使递归查询更具可读性。

编辑

查询的轻微修改可以过滤这些行,对于每个“根”族(即查询开始的那些),存在最长的路径。

我只显示 中的更改部分search_tree,因此您必须从上一节中复制头部:

-- ...
search_tree AS
(
    SELECT
        f.*,
        f.id            family_root,   -- remember where the row came from.
        1 depth,
        ARRAY[f.family_key::text] path
    FROM expanded_family f
    WHERE
        f.id != 1
        AND f.filial_n = 1
    UNION ALL
    SELECT
        f.*,
        st.family_root,    -- propagate the anchestor
        depth + 1,
        path || f.family_key::text
    FROM search_tree st
        JOIN expanded_family f
            ON f.pf_family = st.id
            OR f.pm_family = st.id
    WHERE
        f.id <> 1
)
SELECT
    family_key,
    path
FROM
(
    SELECT
        rank() over (partition by family_root order by depth desc),
        family_root,
        family_key,
        depth,
        path
    FROM search_tree
) AS ranked
WHERE rank = 1;

结果是:

  family_key   |                      path                       
---------------+-------------------------------------------------
 family8AEAGAT | {family1AA,family4AE,family7AEAG,family8AEAGAT}
 family8AEAGAT | {family2AA,family5AG,family7AEAG,family8AEAGAT}
 family8AEAGAT | {family3AA,family6AT,family8AEAGAT}
(3 rows)

编辑2

根据评论,我添加了pretty_print路径的一个版本:

WITH RECURSIVE expanded_family AS (
    SELECT
        f.id,
        pf.id_family    pf_family,
        pm.id_family    pm_family,
        f.filial_n,
        f.family_key || '=(' || pf.plant_key || ' x ' || pm.plant_key || ')' pretty_print
    FROM family f
        JOIN plant pf ON f.female_plant_id = pf.id
        JOIN plant pm ON f.male_plant_id = pm.id
),
search_tree AS
(
    SELECT
        f.id,
        f.id            family_root,
        1 depth,
        'F1 ' || f.pretty_print  path
    FROM expanded_family f
    WHERE
        f.id != 1
        AND f.filial_n = 1
    UNION ALL
    SELECT
        f.id,
        st.family_root,
        st.depth + 1,
        st.path || ' -> F' || st.depth+1 || ' ' || f.pretty_print
    FROM search_tree st
        JOIN expanded_family f
            ON f.pf_family = st.id
            OR f.pm_family = st.id
    WHERE
        f.id <> 1
)
SELECT
    path
FROM
(
    SELECT
        rank() over (partition by family_root order by depth desc),
        path
    FROM search_tree
) AS ranked
WHERE rank = 1;

结果是

    path                                                                           
----------------------------------------------------------------------------------------------------------------------------------------------------------
 F1 family1AA=(female1A x male1A) -> F2 family4AE=(female4A x male1E) -> F3 family7AEAG=(female1AE x male1AG) -> F4 family8AEAGAT=(female1AEAG x male1AT)
 F1 family2AA=(female2A x male2A) -> F2 family5AG=(female5A x male1G) -> F3 family7AEAG=(female1AE x male1AG) -> F4 family8AEAGAT=(female1AEAG x male1AT)
 F1 family3AA=(female3A x male3A) -> F2 family6AT=(female6A x female1T) -> F3 family8AEAGAT=(female1AEAG x male1AT)
(3 rows)
于 2012-12-09T15:16:52.170 回答