这是一个 c++ 解决方案的修订版本,基于与 Matthew 的长时间讨论进行了许多修改(请参阅下面的评论)。我是 c 的新手,所以我相信有人仍然可以改进这一点。
在library("RcppArmadillo")
您应该能够运行整个文件之后,包括使用sourceCpp('cleanmat.cpp')
. c++ 文件包含两个函数。cleanmat
接受两个参数(X
和列的索引)并返回没有缺失值的列的矩阵。keep
只接受一个参数X
并返回一个逻辑向量。
关于传递data.table
对象的注意事项:这些函数不接受 adata.table
作为参数。必须修改函数以DataFrame
作为参数(请参见此处.
清洁垫.cpp
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
using namespace arma;
// [[Rcpp::export]]
mat cleanmat(mat X, uvec idx) {
// remove colums
X = X.cols(idx - 1);
// get dimensions
int n = X.n_rows,k = X.n_cols;
// create keep vector
vec keep = ones<vec>(n);
for (int j = 0; j < k; j++)
for (int i = 0; i < n; i++)
if (keep[i] && !is_finite(X(i,j))) keep[i] = 0;
// alternative with view for each row (slightly slower)
/*vec keep = zeros<vec>(n);
for (int i = 0; i < n; i++) {
keep(i) = is_finite(X.row(i));
}*/
return (X.rows(find(keep==1)));
}
// [[Rcpp::export]]
LogicalVector keep(NumericMatrix X) {
int n = X.nrow(), k = X.ncol();
// create keep vector
LogicalVector keep(n, true);
for (int j = 0; j < k; j++)
for (int i = 0; i < n; i++)
if (keep[i] && NumericVector::is_na(X(i,j))) keep[i] = false;
return (keep);
}
/*** R
require("Rcpp")
require("RcppArmadillo")
require("data.table")
require("microbenchmark")
# create matrix
X = matrix(rnorm(1e+07),ncol=100)
X[sample(nrow(X),1000,replace = TRUE),sample(ncol(X),1000,replace = TRUE)]=NA
colnames(X)=paste("c",1:ncol(X),sep="")
idx=sample(ncol(X),90)
microbenchmark(
X[!apply(X[,idx],1,function(X) any(is.na(X))),idx],
X[rowSums(is.na(X[,idx])) == 0, idx],
cleanmat(X,idx),
X[keep(X[,idx]),idx],
times=3)
# output
# Unit: milliseconds
# expr min lq median uq max
# 1 cleanmat(X, idx) 253.2596 259.7738 266.2880 272.0900 277.8921
# 2 X[!apply(X[, idx], 1, function(X) any(is.na(X))), idx] 1729.5200 1805.3255 1881.1309 1913.7580 1946.3851
# 3 X[keep(X[, idx]), idx] 360.8254 361.5165 362.2077 371.2061 380.2045
# 4 X[rowSums(is.na(X[, idx])) == 0, idx] 358.4772 367.5698 376.6625 379.6093 382.5561
*/