有人可以建议一种在 linq 中创建一定大小的批次的方法吗?
理想情况下,我希望能够以可配置数量的块执行操作。
您无需编写任何代码。使用MoreLINQ Batch 方法,它将源序列批处理成大小合适的存储桶(MoreLINQ 可作为 NuGet 包提供,您可以安装):
int size = 10;
var batches = sequence.Batch(size);
其实现为:
public static IEnumerable<IEnumerable<TSource>> Batch<TSource>(
this IEnumerable<TSource> source, int size)
{
TSource[] bucket = null;
var count = 0;
foreach (var item in source)
{
if (bucket == null)
bucket = new TSource[size];
bucket[count++] = item;
if (count != size)
continue;
yield return bucket;
bucket = null;
count = 0;
}
if (bucket != null && count > 0)
yield return bucket.Take(count).ToArray();
}
public static class MyExtensions
{
public static IEnumerable<IEnumerable<T>> Batch<T>(this IEnumerable<T> items,
int maxItems)
{
return items.Select((item, inx) => new { item, inx })
.GroupBy(x => x.inx / maxItems)
.Select(g => g.Select(x => x.item));
}
}
用法是:
List<int> list = new List<int>() { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
foreach(var batch in list.Batch(3))
{
Console.WriteLine(String.Join(",",batch));
}
输出:
0,1,2
3,4,5
6,7,8
9
如果您从sequence
定义为 an开始IEnumerable<T>
,并且您知道它可以安全地被多次枚举(例如,因为它是一个数组或列表),您可以使用这个简单的模式来批量处理元素:
while (sequence.Any())
{
var batch = sequence.Take(10);
sequence = sequence.Skip(10);
// do whatever you need to do with each batch here
}
这是一个完全惰性、低开销、单功能的 Batch 实现,不做任何累加。在EricRoller 的帮助下,基于 Nick Whaley 的解决方案(并修复了其中的问题)。
迭代直接来自底层的 IEnumerable,因此元素必须以严格的顺序枚举,并且访问不超过一次。如果某些元素没有在内部循环中使用,它们将被丢弃(并尝试通过保存的迭代器再次访问它们将抛出InvalidOperationException: Enumeration already finished.
)。
您可以在.NET Fiddle测试完整的示例。
public static class BatchLinq
{
public static IEnumerable<IEnumerable<T>> Batch<T>(this IEnumerable<T> source, int size)
{
if (size <= 0)
throw new ArgumentOutOfRangeException("size", "Must be greater than zero.");
using (var enumerator = source.GetEnumerator())
while (enumerator.MoveNext())
{
int i = 0;
// Batch is a local function closing over `i` and `enumerator` that
// executes the inner batch enumeration
IEnumerable<T> Batch()
{
do yield return enumerator.Current;
while (++i < size && enumerator.MoveNext());
}
yield return Batch();
while (++i < size && enumerator.MoveNext()); // discard skipped items
}
}
}
以上所有方法在大批量或低内存空间的情况下都表现得非常糟糕。必须编写我自己的管道(注意任何地方都没有项目积累):
public static class BatchLinq {
public static IEnumerable<IEnumerable<T>> Batch<T>(this IEnumerable<T> source, int size) {
if (size <= 0)
throw new ArgumentOutOfRangeException("size", "Must be greater than zero.");
using (IEnumerator<T> enumerator = source.GetEnumerator())
while (enumerator.MoveNext())
yield return TakeIEnumerator(enumerator, size);
}
private static IEnumerable<T> TakeIEnumerator<T>(IEnumerator<T> source, int size) {
int i = 0;
do
yield return source.Current;
while (++i < size && source.MoveNext());
}
}
编辑:这种方法的已知问题是,在移动到下一个批次之前,必须对每个批次进行枚举和完全枚举。例如,这不起作用:
//Select first item of every 100 items
Batch(list, 100).Select(b => b.First())
.NET 6.0 添加了一个Enumerable.Chunk()
扩展方法。
例子:
var list = new List<int> { 1, 2, 3, 4, 5, 6, 7 };
var chunks = list.Chunk(3);
// returns { { 1, 2, 3 }, { 4, 5, 6 }, { 7 } }
对于那些无法升级的人,源代码在 GitHub 上可用。
我想知道为什么没有人发布过老式的 for 循环解决方案。这是一个:
List<int> source = Enumerable.Range(1,23).ToList();
int batchsize = 10;
for (int i = 0; i < source.Count; i+= batchsize)
{
var batch = source.Skip(i).Take(batchsize);
}
这种简单性是可能的,因为 Take 方法:
... 枚举
source
并产生元素,直到count
元素被产生或source
不再包含元素。如果count
超过 中的元素个数,则返回source
的所有元素source
免责声明:
在循环内使用 Skip 和 Take 意味着可枚举对象将被枚举多次。如果 enumerable 被延迟,这是很危险的。它可能会导致多次执行数据库查询、Web 请求或文件读取。此示例明确用于未延迟的 List 的使用,因此问题较小。它仍然是一个缓慢的解决方案,因为每次调用它时,skip 都会枚举集合。
这也可以使用该GetRange
方法解决,但它需要额外的计算来提取可能的剩余批次:
for (int i = 0; i < source.Count; i += batchsize)
{
int remaining = source.Count - i;
var batch = remaining > batchsize ? source.GetRange(i, batchsize) : source.GetRange(i, remaining);
}
这是处理这个问题的第三种方法,它适用于 2 个循环。这确保集合仅被枚举 1 次!:
int batchsize = 10;
List<int> batch = new List<int>(batchsize);
for (int i = 0; i < source.Count; i += batchsize)
{
// calculated the remaining items to avoid an OutOfRangeException
batchsize = source.Count - i > batchsize ? batchsize : source.Count - i;
for (int j = i; j < i + batchsize; j++)
{
batch.Add(source[j]);
}
batch.Clear();
}
这是 Nick Whaley 的 ( link ) 和 infogulch 的 ( link ) 惰性Batch
实现的尝试改进。这个很严格。您要么以正确的顺序枚举批次,要么得到异常。
public static IEnumerable<IEnumerable<TSource>> Batch<TSource>(
this IEnumerable<TSource> source, int size)
{
if (size <= 0) throw new ArgumentOutOfRangeException(nameof(size));
using (var enumerator = source.GetEnumerator())
{
int i = 0;
while (enumerator.MoveNext())
{
if (i % size != 0) throw new InvalidOperationException(
"The enumeration is out of order.");
i++;
yield return GetBatch();
}
IEnumerable<TSource> GetBatch()
{
while (true)
{
yield return enumerator.Current;
if (i % size == 0 || !enumerator.MoveNext()) break;
i++;
}
}
}
}
这是Batch
type 来源的惰性实现IList<T>
。这对枚举没有任何限制。批次可以按任何顺序部分列举,也可以多次列举。尽管如此,在枚举期间不修改集合的限制仍然存在。这是通过enumerator.MoveNext()
在产生任何块或元素之前进行虚拟调用来实现的。不利的一面是枚举器未处理,因为不知道枚举何时结束。
public static IEnumerable<IEnumerable<TSource>> Batch<TSource>(
this IList<TSource> source, int size)
{
if (size <= 0) throw new ArgumentOutOfRangeException(nameof(size));
var enumerator = source.GetEnumerator();
for (int i = 0; i < source.Count; i += size)
{
enumerator.MoveNext();
yield return GetChunk(i, Math.Min(i + size, source.Count));
}
IEnumerable<TSource> GetChunk(int from, int toExclusive)
{
for (int j = from; j < toExclusive; j++)
{
enumerator.MoveNext();
yield return source[j];
}
}
}
与 MoreLINQ 相同的方法,但使用 List 而不是 Array。我还没有做过基准测试,但可读性对某些人来说更重要:
public static IEnumerable<IEnumerable<T>> Batch<T>(this IEnumerable<T> source, int size)
{
List<T> batch = new List<T>();
foreach (var item in source)
{
batch.Add(item);
if (batch.Count >= size)
{
yield return batch;
batch.Clear();
}
}
if (batch.Count > 0)
{
yield return batch;
}
}
Batch
这是我能想到的最干净的版本:
public static IEnumerable<IEnumerable<T>> Batch<T>(this IEnumerable<T> source, int count)
{
if (source == null) throw new System.ArgumentNullException("source");
if (count <= 0) throw new System.ArgumentOutOfRangeException("count");
using (var enumerator = source.GetEnumerator())
{
IEnumerable<T> BatchInner()
{
int counter = 0;
do
yield return enumerator.Current;
while (++counter < count && enumerator.MoveNext());
}
while (enumerator.MoveNext())
yield return BatchInner().ToArray();
}
}
使用此代码:
Console.WriteLine(String.Join(Environment.NewLine,
Enumerable.Range(0, 20).Batch(8).Select(xs => String.Join(",", xs))));
我得到:
0,1,2,3,4,5,6,7
8,9,10,11,12,13,14,15
16,17,18,19
请务必注意,在“”和“”的答案中,此代码失败:
var e = Enumerable.Range(0, 20).Batch(8).ToArray();
Console.WriteLine(String.Join(Environment.NewLine, e.Select(xs => String.Join(",", xs))));
Console.WriteLine();
Console.WriteLine(String.Join(Environment.NewLine, e.Select(xs => String.Join(",", xs))));
根据他们的回答,它给出了:
19
19
19
19
19
19
由于内部可枚举没有被计算为数组。
因此,戴上功能性帽子,这似乎微不足道....但在 C# 中,有一些明显的缺点。
你可能会认为这是 IEnumerable 的展开(谷歌它,你可能会在一些 Haskell 文档中结束,但可能有一些 F# 的东西使用展开,如果你知道 F#,眯着眼睛看 Haskell 文档,它会让感觉)。
展开与折叠(“聚合”)相关,除了不是遍历输入 IEnumerable,而是遍历输出数据结构(IEnumerable 和 IObservable 之间的关系类似,实际上我认为 IObservable 确实实现了一个称为生成的“展开”。 ..)
无论如何,首先你需要一个展开方法,我认为这是可行的(不幸的是,它最终会为大型“列表”炸毁堆栈......你可以在 F# 中使用 yield! 而不是 concat 安全地编写它);
static IEnumerable<T> Unfold<T, U>(Func<U, IEnumerable<Tuple<U, T>>> f, U seed)
{
var maybeNewSeedAndElement = f(seed);
return maybeNewSeedAndElement.SelectMany(x => new[] { x.Item2 }.Concat(Unfold(f, x.Item1)));
}
这有点迟钝,因为 C# 没有实现一些功能性语言认为理所当然的东西......但它基本上需要一个种子,然后生成 IEnumerable 和下一个种子中下一个元素的“也许”答案(也许在 C# 中不存在,所以我们使用 IEnumerable 来伪造它),并连接其余的答案(我不能保证“O(n?)”的复杂性)。
一旦你这样做了;
static IEnumerable<IEnumerable<T>> Batch<T>(IEnumerable<T> xs, int n)
{
return Unfold(ys =>
{
var head = ys.Take(n);
var tail = ys.Skip(n);
return head.Take(1).Select(_ => Tuple.Create(tail, head));
},
xs);
}
这一切看起来都很干净......您将“n”元素作为 IEnumerable 中的“下一个”元素,而“尾部”是未处理列表的其余部分。
如果头部什么都没有……你就结束了……你返回“Nothing”(但伪装成一个空的 IEnumerable>)……否则你返回头部元素和尾部以进行处理。
您可能可以使用 IObservable 来执行此操作,可能已经存在类似“批处理”的方法,您可能可以使用它。
如果堆栈溢出的风险令人担忧(它可能应该),那么您应该在 F# 中实现(并且可能已经有一些 F# 库(FSharpX?))。
(我只对此进行了一些基本测试,因此可能存在一些奇怪的错误)。
我很晚才加入,但我发现了一些更有趣的东西。
所以我们可以在这里使用Skip
以Take
获得更好的性能。
public static class MyExtensions
{
public static IEnumerable<IEnumerable<T>> Batch<T>(this IEnumerable<T> items, int maxItems)
{
return items.Select((item, index) => new { item, index })
.GroupBy(x => x.index / maxItems)
.Select(g => g.Select(x => x.item));
}
public static IEnumerable<T> Batch2<T>(this IEnumerable<T> items, int skip, int take)
{
return items.Skip(skip).Take(take);
}
}
接下来我检查了 100000 条记录。循环仅在以下情况下需要更多时间Batch
控制台应用程序的代码。
static void Main(string[] args)
{
List<string> Ids = GetData("First");
List<string> Ids2 = GetData("tsriF");
Stopwatch FirstWatch = new Stopwatch();
FirstWatch.Start();
foreach (var batch in Ids2.Batch(5000))
{
// Console.WriteLine("Batch Ouput:= " + string.Join(",", batch));
}
FirstWatch.Stop();
Console.WriteLine("Done Processing time taken:= "+ FirstWatch.Elapsed.ToString());
Stopwatch Second = new Stopwatch();
Second.Start();
int Length = Ids2.Count;
int StartIndex = 0;
int BatchSize = 5000;
while (Length > 0)
{
var SecBatch = Ids2.Batch2(StartIndex, BatchSize);
// Console.WriteLine("Second Batch Ouput:= " + string.Join(",", SecBatch));
Length = Length - BatchSize;
StartIndex += BatchSize;
}
Second.Stop();
Console.WriteLine("Done Processing time taken Second:= " + Second.Elapsed.ToString());
Console.ReadKey();
}
static List<string> GetData(string name)
{
List<string> Data = new List<string>();
for (int i = 0; i < 100000; i++)
{
Data.Add(string.Format("{0} {1}", name, i.ToString()));
}
return Data;
}
所用时间是这样的。
首先 - 00:00:00.0708 , 00:00:00.0660
第二个(接受并跳过一个) - 00:00:00.0008、00:00:00.0008
我编写了一个自定义的 IEnumerable 实现,它在没有 linq 的情况下工作,并保证对数据进行单一枚举。它还可以完成所有这些,而不需要在大型数据集上导致内存爆炸的后备列表或数组。
以下是一些基本测试:
[Fact]
public void ShouldPartition()
{
var ints = new List<int> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
var data = ints.PartitionByMaxGroupSize(3);
data.Count().Should().Be(4);
data.Skip(0).First().Count().Should().Be(3);
data.Skip(0).First().ToList()[0].Should().Be(0);
data.Skip(0).First().ToList()[1].Should().Be(1);
data.Skip(0).First().ToList()[2].Should().Be(2);
data.Skip(1).First().Count().Should().Be(3);
data.Skip(1).First().ToList()[0].Should().Be(3);
data.Skip(1).First().ToList()[1].Should().Be(4);
data.Skip(1).First().ToList()[2].Should().Be(5);
data.Skip(2).First().Count().Should().Be(3);
data.Skip(2).First().ToList()[0].Should().Be(6);
data.Skip(2).First().ToList()[1].Should().Be(7);
data.Skip(2).First().ToList()[2].Should().Be(8);
data.Skip(3).First().Count().Should().Be(1);
data.Skip(3).First().ToList()[0].Should().Be(9);
}
对数据进行分区的扩展方法。
/// <summary>
/// A set of extension methods for <see cref="IEnumerable{T}"/>.
/// </summary>
public static class EnumerableExtender
{
/// <summary>
/// Splits an enumerable into chucks, by a maximum group size.
/// </summary>
/// <param name="source">The source to split</param>
/// <param name="maxSize">The maximum number of items per group.</param>
/// <typeparam name="T">The type of item to split</typeparam>
/// <returns>A list of lists of the original items.</returns>
public static IEnumerable<IEnumerable<T>> PartitionByMaxGroupSize<T>(this IEnumerable<T> source, int maxSize)
{
return new SplittingEnumerable<T>(source, maxSize);
}
}
这是实现类
using System.Collections;
using System.Collections.Generic;
internal class SplittingEnumerable<T> : IEnumerable<IEnumerable<T>>
{
private readonly IEnumerable<T> backing;
private readonly int maxSize;
private bool hasCurrent;
private T lastItem;
public SplittingEnumerable(IEnumerable<T> backing, int maxSize)
{
this.backing = backing;
this.maxSize = maxSize;
}
public IEnumerator<IEnumerable<T>> GetEnumerator()
{
return new Enumerator(this, this.backing.GetEnumerator());
}
IEnumerator IEnumerable.GetEnumerator()
{
return this.GetEnumerator();
}
private class Enumerator : IEnumerator<IEnumerable<T>>
{
private readonly SplittingEnumerable<T> parent;
private readonly IEnumerator<T> backingEnumerator;
private NextEnumerable current;
public Enumerator(SplittingEnumerable<T> parent, IEnumerator<T> backingEnumerator)
{
this.parent = parent;
this.backingEnumerator = backingEnumerator;
this.parent.hasCurrent = this.backingEnumerator.MoveNext();
if (this.parent.hasCurrent)
{
this.parent.lastItem = this.backingEnumerator.Current;
}
}
public bool MoveNext()
{
if (this.current == null)
{
this.current = new NextEnumerable(this.parent, this.backingEnumerator);
return true;
}
else
{
if (!this.current.IsComplete)
{
using (var enumerator = this.current.GetEnumerator())
{
while (enumerator.MoveNext())
{
}
}
}
}
if (!this.parent.hasCurrent)
{
return false;
}
this.current = new NextEnumerable(this.parent, this.backingEnumerator);
return true;
}
public void Reset()
{
throw new System.NotImplementedException();
}
public IEnumerable<T> Current
{
get { return this.current; }
}
object IEnumerator.Current
{
get { return this.Current; }
}
public void Dispose()
{
}
}
private class NextEnumerable : IEnumerable<T>
{
private readonly SplittingEnumerable<T> splitter;
private readonly IEnumerator<T> backingEnumerator;
private int currentSize;
public NextEnumerable(SplittingEnumerable<T> splitter, IEnumerator<T> backingEnumerator)
{
this.splitter = splitter;
this.backingEnumerator = backingEnumerator;
}
public bool IsComplete { get; private set; }
public IEnumerator<T> GetEnumerator()
{
return new NextEnumerator(this.splitter, this, this.backingEnumerator);
}
IEnumerator IEnumerable.GetEnumerator()
{
return this.GetEnumerator();
}
private class NextEnumerator : IEnumerator<T>
{
private readonly SplittingEnumerable<T> splitter;
private readonly NextEnumerable parent;
private readonly IEnumerator<T> enumerator;
private T currentItem;
public NextEnumerator(SplittingEnumerable<T> splitter, NextEnumerable parent, IEnumerator<T> enumerator)
{
this.splitter = splitter;
this.parent = parent;
this.enumerator = enumerator;
}
public bool MoveNext()
{
this.parent.currentSize += 1;
this.currentItem = this.splitter.lastItem;
var hasCcurent = this.splitter.hasCurrent;
this.parent.IsComplete = this.parent.currentSize > this.splitter.maxSize;
if (this.parent.IsComplete)
{
return false;
}
if (hasCcurent)
{
var result = this.enumerator.MoveNext();
this.splitter.lastItem = this.enumerator.Current;
this.splitter.hasCurrent = result;
}
return hasCcurent;
}
public void Reset()
{
throw new System.NotImplementedException();
}
public T Current
{
get { return this.currentItem; }
}
object IEnumerator.Current
{
get { return this.Current; }
}
public void Dispose()
{
}
}
}
}
另一种方法是使用Rx Buffer 运算符
//using System.Linq;
//using System.Reactive.Linq;
//using System.Reactive.Threading.Tasks;
var observableBatches = anAnumerable.ToObservable().Buffer(size);
var batches = aList.ToObservable().Buffer(size).ToList().ToTask().GetAwaiter().GetResult();
只是另一个单行实现。它甚至适用于空列表,在这种情况下,您将获得零大小的批次集合。
var aList = Enumerable.Range(1, 100).ToList(); //a given list
var size = 9; //the wanted batch size
//number of batches are: (aList.Count() + size - 1) / size;
var batches = Enumerable.Range(0, (aList.Count() + size - 1) / size).Select(i => aList.GetRange( i * size, Math.Min(size, aList.Count() - i * size)));
Assert.True(batches.Count() == 12);
Assert.AreEqual(batches.ToList().ElementAt(0), new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8, 9 });
Assert.AreEqual(batches.ToList().ElementAt(1), new List<int>() { 10, 11, 12, 13, 14, 15, 16, 17, 18 });
Assert.AreEqual(batches.ToList().ElementAt(11), new List<int>() { 100 });
一个易于使用和理解的版本。
public static List<List<T>> chunkList<T>(List<T> listToChunk, int batchSize)
{
List<List<T>> batches = new List<List<T>>();
if (listToChunk.Count == 0) return batches;
bool moreRecords = true;
int fromRecord = 0;
int countRange = 0;
if (listToChunk.Count >= batchSize)
{
countRange = batchSize;
}
else
{
countRange = listToChunk.Count;
}
while (moreRecords)
{
List<T> batch = listToChunk.GetRange(fromRecord, countRange);
batches.Add(batch);
if ((fromRecord + batchSize) >= listToChunk.Count)
{
moreRecords = false;
}
fromRecord = fromRecord + batch.Count;
if ((fromRecord + batchSize) > listToChunk.Count)
{
countRange = listToChunk.Count - fromRecord;
}
else
{
countRange = batchSize;
}
}
return batches;
}
作为 .NET 6 中 LINQ 的新辅助方法,您可以将任何 IEnumerable 分块:
int chunkNumber = 1;
foreach (int[] chunk in Enumerable.Range(0, 9).Chunk(3))
{
Console.WriteLine($"Chunk {chunkNumber++}");
foreach (var item in chunk)
{
Console.WriteLine(item);
}
}
IAsyncEnumerable
这是一个在 C# 中通过- https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/generate-consume-asynchronous-stream使用异步迭代的实现
public static class EnumerableExtensions
{
/// <summary>
/// Chunks a sequence into a sub-sequences each containing maxItemsPerChunk, except for the last
/// which will contain any items left over.
///
/// NOTE: this implements a streaming implementation via <seealso cref="IAsyncEnumerable{T}"/>.
/// </summary>
public static async IAsyncEnumerable<IEnumerable<T>> ChunkAsync<T>(this IAsyncEnumerable<T> sequence, int maxItemsPerChunk)
{
if (sequence == null) throw new ArgumentNullException(nameof(sequence));
if (maxItemsPerChunk <= 0)
{
throw new ArgumentOutOfRangeException(nameof(maxItemsPerChunk), $"{nameof(maxItemsPerChunk)} must be greater than 0");
}
var chunk = new List<T>(maxItemsPerChunk);
await foreach (var item in sequence)
{
chunk.Add(item);
if (chunk.Count == maxItemsPerChunk)
{
yield return chunk.ToArray();
chunk.Clear();
}
}
// return the "crumbs" that
// didn't make it into a full chunk
if (chunk.Count > 0)
{
yield return chunk.ToArray();
}
}
/// <summary>
/// Chunks a sequence into a sub-sequences each containing maxItemsPerChunk, except for the last
/// which will contain any items left over.
/// </summary>
public static IEnumerable<IEnumerable<T>> Chunk<T>(this IEnumerable<T> sequence, int maxItemsPerChunk)
{
if (sequence == null) throw new ArgumentNullException(nameof(sequence));
if (maxItemsPerChunk <= 0)
{
throw new ArgumentOutOfRangeException(nameof(maxItemsPerChunk), $"{nameof(maxItemsPerChunk)} must be greater than 0");
}
var chunk = new List<T>(maxItemsPerChunk);
foreach (var item in sequence)
{
chunk.Add(item);
if (chunk.Count == maxItemsPerChunk)
{
yield return chunk.ToArray();
chunk.Clear();
}
}
// return the "crumbs" that
// didn't make it into a full chunk
if (chunk.Count > 0)
{
yield return chunk.ToArray();
}
}
}
我知道每个人都使用复杂的系统来完成这项工作,我真的不明白为什么。Func<TSource,Int32,TResult>
Take 和 skip 将允许使用带有转换功能的公共选择的所有这些操作。像:
public IEnumerable<IEnumerable<T>> Buffer<T>(IEnumerable<T> source, int size)=>
source.Select((item, index) => source.Skip(size * index).Take(size)).TakeWhile(bucket => bucket.Any());
另一种执行批处理的方法:
public static class Extensions
{
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
yield return func(v0, v1);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
yield return func(v0, v1, v2);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
yield return func(v0, v1, v2, v3);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v8 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7, v8);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v8 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v9 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v8 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v9 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v10 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v8 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v9 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v10 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v11 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v8 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v9 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v10 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v11 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v12 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v8 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v9 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v10 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v11 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v12 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v13 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v8 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v9 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v10 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v11 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v12 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v13 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v14 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14);
}
}
}
public static IEnumerable<TOut> Batch<T, TOut>(this IEnumerable<T> source, Func<T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, TOut> func)
{
using (var enumerator = source.GetEnumerator())
{
while (true)
{
bool state;
state = enumerator.MoveNext(); if (!state) break; var v0 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v1 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v2 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v3 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v4 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v5 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v6 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v7 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v8 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v9 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v10 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v11 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v12 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v13 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v14 = enumerator.Current;
state = enumerator.MoveNext(); if (!state) break; var v15 = enumerator.Current;
yield return func(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15);
}
}
}
}
这是一个示例用法:
using System;
using System.Linq;
namespace TestProgram
{
class Program
{
static void Main(string[] args)
{
foreach (var item in Enumerable.Range(0, 12).ToArray().Batch((R, X1, Y1, X2, Y2) => (R, X1, Y1, X2, Y2)))
{
Console.WriteLine($"{item.R}, {item.X1}, {item.Y1}, {item.X2}, {item.Y2}");
}
}
}
}
static IEnumerable<IEnumerable<T>> TakeBatch<T>(IEnumerable<T> ts,int batchSize)
{
return from @group in ts.Select((x, i) => new { x, i }).ToLookup(xi => xi.i / batchSize)
select @group.Select(xi => xi.x);
}