我一直在课堂上通过绘制线性规划问题来解决它们,但我想知道如何为特定问题编写程序来为我解决它。如果变量或约束太多,我永远无法通过绘图来做到这一点。
示例问题,在约束条件下最大化 5x + 3y:
- 5x - 2y >= 0
- x + y <= 7
- x <= 5
- x >= 0
- y >= 0
我绘制了这个图,得到了一个有 3 个角的可见区域。x=5 y=2 是最佳点。
我如何把它变成代码?我知道单纯形法。并且非常重要的是,所有 LP 问题都会被编码在同一个结构中吗?蛮力会起作用吗?
我一直在课堂上通过绘制线性规划问题来解决它们,但我想知道如何为特定问题编写程序来为我解决它。如果变量或约束太多,我永远无法通过绘图来做到这一点。
示例问题,在约束条件下最大化 5x + 3y:
我绘制了这个图,得到了一个有 3 个角的可见区域。x=5 y=2 是最佳点。
我如何把它变成代码?我知道单纯形法。并且非常重要的是,所有 LP 问题都会被编码在同一个结构中吗?蛮力会起作用吗?
如果您搜索,您会发现相当多的 Simplex 实现。
除了评论中提到的(C 中的数字食谱),您还可以找到:
要解决您的其他两个问题:
所有 LP 的编码方式都相同吗?是的,可以编写一个通用的 LP 求解器来加载和求解任何 LP。(有读取 LP 之类的行业标准格式mps
和.lp
蛮力会起作用吗?请记住,许多公司和大型组织花费很长时间来微调求解器。有些 LP 具有许多求解器会尝试利用的有趣特性。此外,某些计算可以并行解决。该算法是指数的,因此在大量变量/约束下,蛮力将不起作用。
希望有帮助。
我昨天写的是 matlab,如果你使用 Eigen 库或使用 std::vector 的 std::vector 编写自己的矩阵类,它可以很容易地转录为 C++
function [x, fval] = mySimplex(fun, A, B, lb, up)
%Examples paramters to show that the function actually works
% sample set 1 (works for this data set)
% fun = [8 10 7];
% A = [1 3 2; 1 5 1];
% B = [10; 8];
% lb = [0; 0; 0];
% ub = [inf; inf; inf];
% sample set 2 (works for this data set)
fun = [7 8 10];
A = [2 3 2; 1 1 2];
B = [1000; 800];
lb = [0; 0; 0];
ub = [inf; inf; inf];
% generate a new slack variable for every row of A
numSlackVars = size(A,1); % need a new slack variables for every row of A
% Set up tableau to store algorithm data
tableau = [A; -fun];
tableau = [tableau, eye(numSlackVars + 1)];
lastCol = [B;0];
tableau = [tableau, lastCol];
% for convienience sake, assign the following:
numRows = size(tableau,1);
numCols = size(tableau,2);
% do simplex algorithm
% step 0: find num of negative entries in bottom row of tableau
numNeg = 0; % the number of negative entries in bottom row
for i=1:numCols
if(tableau(numRows,i) < 0)
numNeg = numNeg + 1;
end
end
% Remark: the number of negatives is exactly the number of iterations needed in the
% simplex algorithm
for iterations = 1:numNeg
% step 1: find minimum value in last row
minVal = 10000; % some big number
minCol = 1; % start by assuming min value is the first element
for i=1:numCols
if(tableau(numRows, i) < minVal)
minVal = tableau(size(tableau,1), i);
minCol = i; % update the index corresponding to the min element
end
end
% step 2: Find corresponding ratio vector in pivot column
vectorRatio = zeros(numRows -1, 1);
for i=1:(numRows-1) % the size of ratio vector is numCols - 1
vectorRatio(i, 1) = tableau(i, numCols) ./ tableau(i, minCol);
end
% step 3: Determine pivot element by finding minimum element in vector
% ratio
minVal = 10000; % some big number
minRatio = 1; % holds the element with the minimum ratio
for i=1:numRows-1
if(vectorRatio(i,1) < minVal)
minVal = vectorRatio(i,1);
minRatio = i;
end
end
% step 4: assign pivot element
pivotElement = tableau(minRatio, minCol);
% step 5: perform pivot operation on tableau around the pivot element
tableau(minRatio, :) = tableau(minRatio, :) * (1/pivotElement);
% step 6: perform pivot operation on rows (not including last row)
for i=1:size(vectorRatio,1)+1 % do last row last
if(i ~= minRatio) % we skip over the minRatio'th element of the tableau here
tableau(i, :) = -tableau(i,minCol)*tableau(minRatio, :) + tableau(i,:);
end
end
end
% Now we can interpret the algo tableau
numVars = size(A,2); % the number of cols of A is the number of variables
x = zeros(size(size(tableau,1), 1)); % for efficiency
% Check for basicity
for col=1:numVars
count_zero = 0;
count_one = 0;
for row = 1:size(tableau,1)
if(tableau(row,col) < 1e-2)
count_zero = count_zero + 1;
elseif(tableau(row,col) - 1 < 1e-2)
count_one = count_one + 1;
stored_row = row; % we store this (like in memory) column for later use
end
end
if(count_zero == (size(tableau,1) -1) && count_one == 1) % this is the case where it is basic
x(col,1) = tableau(stored_row, numCols);
else
x(col,1) = 0; % this is the base where it is not basic
end
end
% find function optimal value at optimal solution
fval = x(1,1) * fun(1,1); % just needed for logic to work here
for i=2:numVars
fval = fval + x(i,1) * fun(1,i);
end
end