基于这个答案,这里有两个版本的用于合并排序的合并函数。你能帮我理解为什么第二个更快。我已经测试了它的 50000 列表,第二个快 8 倍(要点)。
def merge1(left, right):
i = j = inv = 0
merged = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
merged.append(left[i])
i += 1
else:
merged.append(right[j])
j += 1
inv += len(left[i:])
merged += left[i:]
merged += right[j:]
return merged, inv
.
def merge2(array1, array2):
inv = 0
merged_array = []
while array1 or array2:
if not array1:
merged_array.append(array2.pop())
elif (not array2) or array1[-1] > array2[-1]:
merged_array.append(array1.pop())
inv += len(array2)
else:
merged_array.append(array2.pop())
merged_array.reverse()
return merged_array, inv
这是排序功能:
def _merge_sort(list, merge):
len_list = len(list)
if len_list < 2:
return list, 0
middle = len_list / 2
left, left_inv = _merge_sort(list[:middle], merge)
right, right_inv = _merge_sort(list[middle:], merge)
l, merge_inv = merge(left, right)
inv = left_inv + right_inv + merge_inv
return l, inv
.
import numpy.random as nprnd
test_list = nprnd.randint(1000, size=50000).tolist()
test_list_tmp = list(test_list)
merge_sort(test_list_tmp, merge1)
test_list_tmp = list(test_list)
merge_sort(test_list_tmp, merge2)