实际上,二进制搜索可以应用在这里,但有一些变化。我们必须计算的不是中心,而是要访问的最佳位置。
int length = maxUnchecked - minChecked;
whereToGo = minChecked + (int)(length * factorIncrease) + stepIncrease;
因为我们需要找到沟通失败的第一个位置,所以有时我们必须返回,之后可以优化使用其他策略
int length = maxUnchecked - minChecked;
int whereToGo = 0;
if ( increase )
whereToGo = minChecked + (int)(length * factorIncrease) + stepIncrease;
else
whereToGo = minChecked + (int)(length * factorDecrease) + stepDecrease;
因此,我们的任务 - 找出这样的最优 factorIncrease、factorDecrease、stepIncrease、stepDecrease,f(failPos) 的总和值将是最小的。如何?如果 n (总长度 / 200.0f)很小,完整的蛮力将帮助你。否则,您可以尝试使用遗传算法或其他简单的方法。
步长精度 = 1,步长限制 = [0, n)。因子 eps - 1/(4*n),因子限制 - [0,1)。
现在,简单的代码(c#)来证明这一点:
class Program
{
static double factorIncrease;
static int stepIncrease;
static double factorDecrease;
static int stepDecrease;
static bool debug = false;
static int f(int lastPosition, int minChecked, int maxUnchecked, int last, int failPos, bool increase = true, int depth = 0)
{
if ( depth == 100 )
throw new Exception();
if ( maxUnchecked - minChecked <= 0 ) {
if ( debug )
Console.WriteLine("left: {0} right: {1}", minChecked, maxUnchecked);
return 0;
}
int length = maxUnchecked - minChecked;
int whereToGo = 0;
if ( increase )
whereToGo = minChecked + (int)(length * factorIncrease) + stepIncrease;
else
whereToGo = minChecked + (int)(length * factorDecrease) + stepDecrease;
if ( whereToGo <= minChecked )
whereToGo = minChecked + 1;
if ( whereToGo >= maxUnchecked )
whereToGo = maxUnchecked;
int cur = Math.Abs(whereToGo - lastPosition) + 3;
if ( debug ) {
Console.WriteLine("left: {2} right: {3} whereToGo:{0} cur: {1}", whereToGo, cur, minChecked, maxUnchecked);
}
if ( failPos == whereToGo || whereToGo == maxUnchecked )
return cur + f(whereToGo, minChecked, whereToGo - 1, last, failPos, true & increase, depth + 1);
else if ( failPos < whereToGo )
return cur + f(whereToGo, minChecked, whereToGo, last, failPos, true & increase, depth + 1);
else
return cur + f(whereToGo, whereToGo, maxUnchecked, last, failPos, false, depth + 1);
}
static void Main(string[] args)
{
int n = 20;
int minSum = int.MaxValue;
var minFactorIncrease = 0.0;
var minStepIncrease = 0;
var minFactorDecrease = 0.0;
var minStepDecrease = 0;
var eps = 1 / (4.00 * (double)n);
for ( factorDecrease = 0.0; factorDecrease < 1; factorDecrease += eps )
for ( stepDecrease = 0; stepDecrease < n; stepDecrease++ )
for ( factorIncrease = 0.0; factorIncrease < 1; factorIncrease += eps )
for ( stepIncrease = 0; stepIncrease < n; stepIncrease++ ) {
int cur = 0;
for ( int i = 0; i < n; i++ ) {
try {
cur += f(0, -1, n - 1, n - 1, i);
}
catch {
Console.WriteLine("fail {0} {1} {2} {3} {4}", factorIncrease, stepIncrease, factorDecrease, stepDecrease, i);
return;
}
}
if ( cur < minSum ) {
minSum = cur;
minFactorIncrease = factorIncrease;
minStepIncrease = stepIncrease;
minFactorDecrease = factorDecrease;
minStepDecrease = stepDecrease;
}
}
Console.WriteLine("best - mathmin={4}, f++:{0} s++:{1} f--:{2} s--:{3}", minFactorIncrease, minStepIncrease, minFactorDecrease, minStepDecrease, minSum);
factorIncrease = minFactorIncrease;
factorDecrease = minFactorDecrease;
stepIncrease = minStepIncrease;
stepDecrease = minStepDecrease;
//debug =true;
for ( int i = 0; i < n; i++ )
Console.WriteLine("{0} {1}", 3 + i * 4, f(0, -1, n - 1, n - 1, i));
debug = true;
Console.WriteLine(f(0, -1, n - 1, n - 1, n - 1));
}
}
所以,一些值(f++ - factorIncrease,s++ - stepIncrease,f--- - factorDecrease):
n = 9 mathmin = 144, f++: 0,1(1) s++: 1 f--: 0,2(2) s--: 1
n = 20 mathmin = 562, f++: 0,1125 s++: 2 f--: 0,25 s--: 1