这个data.table
包非常适合这种东西。
首先,加载包并创建一些数据。
library(data.table)
set.seed(1)
dat <- data.table(Species = paste("s", sample(1:3, 15, replace = TRUE), sep = ""),
BA = rnorm(15), CA = rnorm(15), DA = rnorm(15), EA = rnorm(15),
key="Species")
dat
# Species BA CA DA EA
# 1: s1 -0.005767173 0.80418951 1.2383041 -0.79533912
# 2: s1 -1.147657009 -0.69095384 -0.4527840 -0.17262350
# 3: s1 -0.891921127 -0.43331032 1.1565370 -0.94064916
# 4: s1 0.435683299 -0.64947165 0.8320471 -0.11582532
# 5: s1 -1.237538422 0.72675075 -0.2273287 -0.81496871
# 6: s2 2.404653389 -0.05710677 -0.2793463 -0.05487747
# 7: s2 0.763593461 0.50360797 1.7579031 0.25014132
# 8: s2 -0.411510833 -0.23570656 -1.0655906 0.35872890
# 9: s2 0.252223448 -0.54288826 -1.5637821 -0.01104548
# 10: s2 0.377395646 0.99216037 -0.3767027 -1.42509839
# 11: s3 -0.799009249 1.08576936 0.5607461 0.61824329
# 12: s3 -0.289461574 -1.28459935 -0.8320433 -2.22390027
# 13: s3 -0.299215118 0.04672617 -1.1665705 -1.26361438
# 14: s3 -0.224267885 1.15191175 0.2661374 0.24226348
# 15: s3 0.133336361 -0.42951311 2.4413646 0.36594112
注意:如果你已经有一个data.frame
(我想你有),你可以使用data.table(YourDataFrame, key=YourGroupingColumns)
这是实际的聚合。.SD
是数据列的子集。默认情况下,这是您数据中除key
s 之外的所有列(您的分组列;在这种情况下,我们将“Species”指定为我们的键)。
dat[, lapply(.SD, sum), by=key(dat)]
# Species BA CA DA EA
# 1: s1 -2.847200 -0.2427955 2.546776 -2.8394058
# 2: s2 3.386355 0.6600668 -1.527519 -0.8821511
# 3: s3 -1.478617 0.5702948 1.269634 -2.2610668
但是,还有一个.SDcols
参数可让您通过名称或数字索引指定您感兴趣的列。
dat[, lapply(.SD, sum), by=key(dat), .SDcols = "DA"]
# Species DA
# 1: s1 2.546776
# 2: s2 -1.527519
# 3: s3 1.269634
dat[, lapply(.SD, sum), by=key(dat), .SDcols = 2:3]
# Species BA CA
# 1: s1 -2.847200 -0.2427955
# 2: s2 3.386355 0.6600668
# 3: s3 -1.478617 0.5702948
# or perhaps, more easily understood.
dat[, lapply(.SD, sum), by=key(dat), .SDcols = c('BA','CA')]
# Species BA CA
# 1: s1 -2.847200 -0.2427955
# 2: s2 3.386355 0.6600668
# 3: s3 -1.478617 0.5702948