9

我使用 Matplotlib 生成散点图的 PNG 文件。现在,对于每个散点图,除了 PNG 文件外,我还想生成散点图中各个点的像素坐标列表。

我用来为散点图生成 PNG 文件的代码基本上是这样的:

from matplotlib.figure import Figure
from matplotlib.pyplot import setp
from matplotlib.backends.backend_agg import FigureCanvasAgg

...

fig = Figure(figsize=(3, 3), dpi=100)
ax = fig.gca()
for (x, y), m, c in zip(points, markers, colors):
    ax.scatter(x, y, marker=m, c=c, s=SIZE, vmin=VMIN, vmax=VMAX)

# several assorted tweaks like ax.spines['top'].set_color('none'), etc.

setp(fig, 'facecolor', 'none')

# FigureCanvasAgg(fig).print_png(FILEPATH)

...(其中 UPPERCASE 中的变量代表可设置的参数)。

如何(px, py)在生成的 PNG 中生成与 中的点相对应的像素坐标对列表points

[编辑:删除了一些关于 . 的废话imshow。]

[编辑:

好的,这就是我根据 Joe Kington 的建议最终得出的结论。

# continued from above...

cnvs = FigureCanvasAgg(fig)
fig.set_canvas(cnvs)
_, ht = cnvs.get_width_height()
pcoords = [(int(round(t[0])), int(round(ht - t[1]))) for t in
           ax.transData.transform(points)]
fig.savefig(FILEPATH, dpi=fig.dpi)

生成的像素坐标 (in pcoords) 非常接近正确值。事实上,y 坐标是完全正确的。x 坐标相差 1 或 2 个像素,这对我的目的来说已经足够了。

]

4

2 回答 2

20

这样做相当简单,但要了解发生了什么,您需要阅读一些有关 matplotlib 转换的内容。转换教程是一个很好的起点。

无论如何,这里有一个例子:

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
points, = ax.plot(range(10), 'ro')
ax.axis([-1, 10, -1, 10])

# Get the x and y data and transform it into pixel coordinates
x, y = points.get_data()
xy_pixels = ax.transData.transform(np.vstack([x,y]).T)
xpix, ypix = xy_pixels.T

# In matplotlib, 0,0 is the lower left corner, whereas it's usually the upper 
# left for most image software, so we'll flip the y-coords...
width, height = fig.canvas.get_width_height()
ypix = height - ypix

print 'Coordinates of the points in pixel coordinates...'
for xp, yp in zip(xpix, ypix):
    print '{x:0.2f}\t{y:0.2f}'.format(x=xp, y=yp)

# We have to be sure to save the figure with it's current DPI
# (savfig overrides the DPI of the figure, by default)
fig.savefig('test.png', dpi=fig.dpi)

这产生:

Coordinates of the points in pixel coordinates...
125.09  397.09
170.18  362.18
215.27  327.27
260.36  292.36
305.45  257.45
350.55  222.55
395.64  187.64
440.73  152.73
485.82  117.82
530.91  82.91

在此处输入图像描述

于 2012-12-01T19:31:58.073 回答
0

尝试注释框: http: //matplotlib.org/examples/pylab_examples/demo_annotation_box.html

import matplotlib.pyplot as plt
from matplotlib.offsetbox import TextArea, DrawingArea, OffsetImage, \
     AnnotationBbox

for (x, y), m, c in zip(points, markers, colors):
    ax.scatter(x, y, marker=m, c=c, s=SIZE, vmin=VMIN, vmax=VMAX)

    for px, py in zip(x,y):
        offsetbox = TextArea( " %s, %s" (px, py ) , minimumdescent=False)
        ab = AnnotationBbox(offsetbox,(px, py ),
                        xybox=(-20, 40),
                        xycoords='data',
                        boxcoords="offset points",
                        arrowprops=dict(arrowstyle="->"))
        ax.add_artist(ab)

我当前的计算机上没有安装 matplotlib,因此我的代码可能无法正常工作。

于 2012-12-01T19:14:40.917 回答