4

我需要一些逻辑来找到句子中的语法模式:

[adjective]* [noun]+ [hyphen] [verb Past Participle | verb Present Participle | one of the special adjectives] [adjective]* [noun]+

其中 * 表示任何数字(0 或更多),?| 表示 0 或 1,+ 表示 1 或更多,| 意味着或。

如果我给出任何输入句子,逻辑必须搜索它是否包含上述模式。我完全不知道如何开始。请如果有人可以用一些逻辑建议我。

4

4 回答 4

5

这是伪代码。它对输入进行 2 次传递,在第一次传递中,它将输入字符串中的每个单词转换为引用其类型的字母,在第二次传递中,您将第一次传递的结果与您的正则表达式匹配。

method(input) {
    typed_input = '';
    for (word in input) {
        if (word is noun) {
            typed_input += 'n'
        else if (word is adjective)
            typed_input += 'a'
        else if (word is hyphen)
            typed_input += 'h'
        else if (word is verb Past Participle)
            typed_input += 'v'
        else if (word is verb Present Participle)
            typed_input += 'p'
        else if (word is one of the special adjectives)
            typed_input += 's'
        else
           throw exception("invalid input")
    }
    return typed_input.match("a*n+h[v|p|s]a*n+")
}
于 2012-11-29T04:18:34.697 回答
2

你写的语法模式很简单,不实用。您应该使用块解析。句子中的形容词可能不仅是一个词(如“猫”),也可能是一组词(如“黑猫棕色眼睛”)。

当句子包含“块”而不是单个形容词时,您的模式将失败。句子应该像树结构一样解析。

语法检查是一个相当复杂的问题。在你写任何东西之前——你应该熟悉有关语法检查和自然语言处理的理论。

你可以从这个开始:

Nay Yee Lina、Khin Mar Soeb 和 Ni Lar Thein 为翻译的英语句子开发基于块的语法检查器

也许这也是:

Lionel Clément、Kim Gerdes、Renaud Marlet 的语法检查器的语法校正算法深度解析和最小校正

SCP:Philip Brooks 的简单块解析器

我可以把它放在评论中,但标题很长,在这里它更具可读性。

于 2012-11-29T04:42:58.057 回答
2

这可能会对您有所帮助。链接到斯坦福解析器。 你也可以下载java中的代码。

于 2014-07-05T10:44:50.267 回答
0

我已经使用stand ford解析器在java中编写了simler程序。您应该使用java stand ford解析器生成数组列表的标记词。

 package postagger;
    /*
     * 
     * 
     * lphabetical list of part-of-speech tags used in the Penn Treebank Project:

    Number
    Tag
    Description
    1.  CC  Coordinating conjunction
    2.  CD  Cardinal number
    3.  DT  Determiner
    4.  EX  Existential there
    5.  FW  Foreign word
    6.  IN  Preposition or subordinating conjunction
    7.  JJ  Adjective
    8.  JJR Adjective, comparative
    9.  JJS Adjective, superlative
    10. LS  List item marker
    11. MD  Modal
    12. NN  Noun, singular or mass
    13. NNS Noun, plural
    14. NNP Proper noun, singular
    15. NNPS    Proper noun, plural
    16. PDT Predeterminer
    17. POS Possessive ending
    18. PRP Personal pronoun
    19. PRP$    Possessive pronoun
    20. RB  Adverb
    21. RBR Adverb, comparative
    22. RBS Adverb, superlative
    23. RP  Particle
    24. SYM Symbol
    25. TO  to
    26. UH  Interjection
    27. VB  Verb, base form
    28. VBD Verb, past tense
    29. VBG Verb, gerund or present participle
    30. VBN Verb, past participle
    31. VBP Verb, non-3rd person singular present
    32. VBZ Verb, 3rd person singular present
    33. WDT Wh-determiner
    34. WP  Wh-pronoun
    35. WP$ Possessive wh-pronoun
    36. WRB Wh-adverb
     */
    import java.util.ArrayList;
    import java.util.Collection;
    import java.util.HashMap;
    import java.util.LinkedHashSet;
    import java.util.LinkedList;
    import java.util.List;
    import java.util.Map;
    import java.util.Scanner;
    import java.io.StringReader;

    import semanticengine.Description;


    import edu.stanford.nlp.objectbank.TokenizerFactory;
    import edu.stanford.nlp.process.CoreLabelTokenFactory;
    import edu.stanford.nlp.process.DocumentPreprocessor;
    import edu.stanford.nlp.process.PTBTokenizer;
    import edu.stanford.nlp.ling.CoreLabel;  
    import edu.stanford.nlp.ling.HasWord;  
    import edu.stanford.nlp.ling.TaggedWord;
    import edu.stanford.nlp.trees.*;
    import edu.stanford.nlp.parser.lexparser.LexicalizedParser;

    public class EnglishParser {
    public    static LexicalizedParser lp = null;

      public static void main(String[] args)
      {



          EnglishParser MC=new EnglishParser();
          Scanner sc=new Scanner(System.in);
          String s="";
          while(s!="end")
          {
          s=sc.nextLine();
          ArrayList<TaggedWord> AT=MC.Parse(s);
          Description obj=   new  Description(AT );

          System.out.println (AT);
          }


      }



    public static void demoDP(LexicalizedParser lp, String filename) {
        // This option shows loading and sentence-segment and tokenizing
        // a file using DocumentPreprocessor
        TreebankLanguagePack tlp = new PennTreebankLanguagePack();
        GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory();
        // You could also create a tokenier here (as below) and pass it
        // to DocumentPreprocessor
        for (List<HasWord> sentence : new DocumentPreprocessor(filename)) {
          Tree parse = lp.apply(sentence);
          parse.pennPrint();
          System.out.println();

          GrammaticalStructure gs = gsf.newGrammaticalStructure(parse);
          Collection tdl = gs.typedDependenciesCCprocessed(true);
          System.out.println(tdl);
          System.out.println();
        }
      }










      //Method for Pos taging.(POS) tagger that assigns its class
      //(verb, adjective, ...) to each word of the sentence,
      //para@ english is the argument to be tagged
      public ArrayList<TaggedWord> Parse(String English)
      { 
          String[] sent =English.split(" ");// { "This", "is", "an", "easy", "sentence", "." };
          List<CoreLabel> rawWords = new ArrayList<CoreLabel>();
          for (String word : sent) {
              CoreLabel l = new CoreLabel();
              l.setWord(word);
              rawWords.add(l);
                }
      Tree parse = lp.apply(rawWords);
      return parse.taggedYield();

      }










      public EnglishParser() 
      {
          lp = 
                  new LexicalizedParser("grammar/englishPCFG.ser.gz");


      } // static methods only

    }


    // return pattern of the sentence
        public String getPattern(ArrayList<TaggedWord> Sen) 
{
            Iterator<TaggedWord> its = Sen.iterator();
            while (its.hasNext()) {
                TaggedWord obj = its.next();
                if ((obj.tag().equals("VBZ")) || (obj.tag().equals("VBP"))) {
                    if (its.hasNext()) {
                        TaggedWord obj2 = its.next();

                        if (obj2.tag().equals("VBG")) {
                            if (its.hasNext()) {
                                TaggedWord obj3 = its.next();
                                if ((obj3.tag().equals("VBN"))) {
                                    return "PRESENT_CONT_PASS";

                                }
                            }
                            return "PRESENT_CONT";
                            // Present Continues
                        } else if ((obj2.tag().equals("VBN"))) {
                            return "PRESENT_PASS";

                        }
                        return "PRESENT_SIMP";

                    } else {
                        return "PRESENT_SIMP";
                    }

                } else if (obj.tag().equals("VBD")) {
                    if (its.hasNext()) {
                        TaggedWord obj2 = its.next();

                        if (obj2.tag().equals("VBG")) {

                            if (its.hasNext()) {
                                TaggedWord obj3 = its.next();
                                if ((obj3.tag().equals("VBN"))) {
                                    return "PATT_CONT_PASS";

                                }
                            }

                            return "PAST_CONT";
                        } else if ((obj2.tag().equals("VBN"))) {
                            return "PAST_PASS";

                        }
                        return "PAST_SIMP";

                    } else {
                        return "PAST_SIMP";
                    }

                }

                else if (obj.tag().equals("VB")) {
                    if (its.hasNext()) {
                        TaggedWord obj2 = its.next();

                        if (obj2.tag().equals("VBG")) {
                            return "FUT_CONT";
                        } else if ((obj2.tag().equals("VBN"))) {
                            return "FUT_CONT";

                        }

                    } else {
                        return "FUT_SIMP";
                    }

                }

            }
            return "NO_PATTERN";
        }
于 2015-07-31T08:41:14.757 回答