我的解决方案基于Suffix arrays。它是由Prefix 将 Longest common prefix 加倍构造的。最坏情况的复杂度为 O(n (log n)^2)。文件“iliad.mb.txt”在我的笔记本电脑上需要 4 秒。该longest_common_substring
函数很短并且可以很容易地修改,例如用于搜索 10 个最长的非重叠子字符串。 如果重复字符串超过 10000 个字符,则此 Python 代码比问题中的原始 C 代码更快。
from itertools import groupby
from operator import itemgetter
def longest_common_substring(text):
"""Get the longest common substrings and their positions.
>>> longest_common_substring('banana')
{'ana': [1, 3]}
>>> text = "not so Agamemnon, who spoke fiercely to "
>>> sorted(longest_common_substring(text).items())
[(' s', [3, 21]), ('no', [0, 13]), ('o ', [5, 20, 38])]
This function can be easy modified for any criteria, e.g. for searching ten
longest non overlapping repeated substrings.
"""
sa, rsa, lcp = suffix_array(text)
maxlen = max(lcp)
result = {}
for i in range(1, len(text)):
if lcp[i] == maxlen:
j1, j2, h = sa[i - 1], sa[i], lcp[i]
assert text[j1:j1 + h] == text[j2:j2 + h]
substring = text[j1:j1 + h]
if not substring in result:
result[substring] = [j1]
result[substring].append(j2)
return dict((k, sorted(v)) for k, v in result.items())
def suffix_array(text, _step=16):
"""Analyze all common strings in the text.
Short substrings of the length _step a are first pre-sorted. The are the
results repeatedly merged so that the garanteed number of compared
characters bytes is doubled in every iteration until all substrings are
sorted exactly.
Arguments:
text: The text to be analyzed.
_step: Is only for optimization and testing. It is the optimal length
of substrings used for initial pre-sorting. The bigger value is
faster if there is enough memory. Memory requirements are
approximately (estimate for 32 bit Python 3.3):
len(text) * (29 + (_size + 20 if _size > 2 else 0)) + 1MB
Return value: (tuple)
(sa, rsa, lcp)
sa: Suffix array for i in range(1, size):
assert text[sa[i-1]:] < text[sa[i]:]
rsa: Reverse suffix array for i in range(size):
assert rsa[sa[i]] == i
lcp: Longest common prefix for i in range(1, size):
assert text[sa[i-1]:sa[i-1]+lcp[i]] == text[sa[i]:sa[i]+lcp[i]]
if sa[i-1] + lcp[i] < len(text):
assert text[sa[i-1] + lcp[i]] < text[sa[i] + lcp[i]]
>>> suffix_array(text='banana')
([5, 3, 1, 0, 4, 2], [3, 2, 5, 1, 4, 0], [0, 1, 3, 0, 0, 2])
Explanation: 'a' < 'ana' < 'anana' < 'banana' < 'na' < 'nana'
The Longest Common String is 'ana': lcp[2] == 3 == len('ana')
It is between tx[sa[1]:] == 'ana' < 'anana' == tx[sa[2]:]
"""
tx = text
size = len(tx)
step = min(max(_step, 1), len(tx))
sa = list(range(len(tx)))
sa.sort(key=lambda i: tx[i:i + step])
grpstart = size * [False] + [True] # a boolean map for iteration speedup.
# It helps to skip yet resolved values. The last value True is a sentinel.
rsa = size * [None]
stgrp, igrp = '', 0
for i, pos in enumerate(sa):
st = tx[pos:pos + step]
if st != stgrp:
grpstart[igrp] = (igrp < i - 1)
stgrp = st
igrp = i
rsa[pos] = igrp
sa[i] = pos
grpstart[igrp] = (igrp < size - 1 or size == 0)
while grpstart.index(True) < size:
# assert step <= size
nextgr = grpstart.index(True)
while nextgr < size:
igrp = nextgr
nextgr = grpstart.index(True, igrp + 1)
glist = []
for ig in range(igrp, nextgr):
pos = sa[ig]
if rsa[pos] != igrp:
break
newgr = rsa[pos + step] if pos + step < size else -1
glist.append((newgr, pos))
glist.sort()
for ig, g in groupby(glist, key=itemgetter(0)):
g = [x[1] for x in g]
sa[igrp:igrp + len(g)] = g
grpstart[igrp] = (len(g) > 1)
for pos in g:
rsa[pos] = igrp
igrp += len(g)
step *= 2
del grpstart
# create LCP array
lcp = size * [None]
h = 0
for i in range(size):
if rsa[i] > 0:
j = sa[rsa[i] - 1]
while i != size - h and j != size - h and tx[i + h] == tx[j + h]:
h += 1
lcp[rsa[i]] = h
if h > 0:
h -= 1
if size > 0:
lcp[0] = 0
return sa, rsa, lcp
我更喜欢这个解决方案而不是更复杂的 O(n log n),因为 Python 有一个非常快速的列表排序算法(Timsort)。Python 的排序可能比那篇文章中的方法中必要的线性时间操作要快,在随机字符串和小字母表(典型用于 DNA 基因组分析)的非常特殊的假设下,这应该是 O(n)。我在Gog 2011中读到,我的算法的最坏情况 O(n log n) 实际上比许多不能使用 CPU 内存缓存的 O(n) 算法更快。
如果文本包含 8 kB 长的重复字符串,则基于grow_chains的另一个答案中的代码比问题中的原始示例慢 19 倍。长时间重复的文本在古典文学中并不典型,但它们经常出现在例如“独立”学校作业集中。该程序不应该冻结它。
我为 Python 2.7、3.3 - 3.6编写了一个示例并使用相同的代码进行了测试。