好吧,我正在尝试使用卡尔曼滤波器创建一个小斑点跟踪示例。我正在使用 openCV 来完成这项任务,但是它似乎没有按预期工作,因为当我隐藏跟踪输出的对象时,卡尔曼滤波器不会尝试估计对象应该在哪里。我附上下面的代码,我希望有人能提示我做错了什么。
提前致谢.... :-)
#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/video/tracking.hpp>
using namespace std;
using namespace cv;
#define drawCross( img, center, color, d )\
line(img, Point(center.x - d, center.y - d), Point(center.x + d, center.y + d), color, 2, CV_AA, 0);\
line(img, Point(center.x + d, center.y - d), Point(center.x - d, center.y + d), color, 2, CV_AA, 0 )\
int main()
{
Mat frame, thresh_frame;
vector<Mat> channels;
VideoCapture capture;
vector<Vec4i> hierarchy;
vector<vector<Point> > contours;
capture.open("capture.avi");
if(!capture.isOpened())
cerr << "Problem opening video source" << endl;
KalmanFilter KF(4, 2, 0);
Mat_<float> state(4, 1);
Mat_<float> processNoise(4, 1, CV_32F);
Mat_<float> measurement(2,1); measurement.setTo(Scalar(0));
KF.statePre.at<float>(0) = 0;
KF.statePre.at<float>(1) = 0;
KF.statePre.at<float>(2) = 0;
KF.statePre.at<float>(3) = 0;
KF.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); // Including velocity
KF.processNoiseCov = *(cv::Mat_<float>(4,4) << 0.2,0,0.2,0, 0,0.2,0,0.2, 0,0,0.3,0, 0,0,0,0.3);
setIdentity(KF.measurementMatrix);
setIdentity(KF.processNoiseCov, Scalar::all(1e-4));
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
setIdentity(KF.errorCovPost, Scalar::all(.1));
while((char)waitKey(1) != 'q' && capture.grab())
{
capture.retrieve(frame);
split(frame, channels);
add(channels[0], channels[1], channels[1]);
subtract(channels[2], channels[1], channels[2]);
threshold(channels[2], thresh_frame, 50, 255, CV_THRESH_BINARY);
medianBlur(thresh_frame, thresh_frame, 5);
findContours(thresh_frame, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
Mat drawing = Mat::zeros(thresh_frame.size(), CV_8UC1);
for(size_t i = 0; i < contours.size(); i++)
{
// cout << contourArea(contours[i]) << endl;
if(contourArea(contours[i]) > 500)
drawContours(drawing, contours, i, Scalar::all(255), CV_FILLED, 8, vector<Vec4i>(), 0, Point());
}
thresh_frame = drawing;
findContours(thresh_frame, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
drawing = Mat::zeros(thresh_frame.size(), CV_8UC1);
for(size_t i = 0; i < contours.size(); i++)
{
// cout << contourArea(contours[i]) << endl;
if(contourArea(contours[i]) > 500)
drawContours(drawing, contours, i, Scalar::all(255), CV_FILLED, 8, vector<Vec4i>(), 0, Point());
}
thresh_frame = drawing;
// Get the moments
vector<Moments> mu(contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{ mu[i] = moments( contours[i], false ); }
// Get the mass centers:
vector<Point2f> mc( contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{ mc[i] = Point2f( mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00 ); }
Mat prediction = KF.predict();
Point predictPt(prediction.at<float>(0),prediction.at<float>(1));
for(size_t i = 0; i < mc.size(); i++)
{
drawCross(frame, mc[i], Scalar(255, 0, 0), 5);
measurement(0) = mc[i].x;
measurement(1) = mc[i].y;
}
Point measPt(measurement(0),measurement(1));
Mat estimated = KF.correct(measurement);
Point statePt(estimated.at<float>(0),estimated.at<float>(1));
drawCross(frame, statePt, Scalar(255, 255, 255), 5);
vector<vector<Point> > contours_poly( contours.size() );
vector<Rect> boundRect( contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{ approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true );
boundRect[i] = boundingRect( Mat(contours_poly[i]) );
}
for( size_t i = 0; i < contours.size(); i++ )
{
rectangle( frame, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 2, 8, 0 );
}
imshow("Video", frame);
imshow("Red", channels[2]);
imshow("Binary", thresh_frame);
}
return 0;
}